华为:2025年鸿蒙编程语言白皮书鸿蒙编程语言白皮书 文档版本 发布日期 V1.0 2025-06-20 2 版权所有 © 华为终端有限公司 2025。保留一切权利。 本材料所载内容受著作权法的保护,著作权由华为公司或其许可人拥有,但注明引用其他方 的内容除外。未经华为公司或其许可人事先书面许可,任何人不得将本材料中的任何内容以 任何方式进行复制、经销 1)高效开发 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · O1 鸿蒙编程语言整体框架 18 CONTENT 鸿蒙编程语言适用场景 1)ArkTS 概述· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 6 2)仓颉概述· · · · · · · · · · · · 3)C/C++概述· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 4)语言互操作介绍· · · · · · · · · · · · · · · · · · · · · · · · · · · · O2 3)安全 · · · · · · · · · · · · · ·0 积分 | 65 页 | 2.09 MB | 4 月前3
基于大语言模型技术的智慧应急应用:知识管理与应急大脑的总体目标,强调要适应科技信息化发展大势,以信 息化推进应急管理现代化,提高监测预警、监管执 法、指挥决策、救援实战、社会动员等应急管理能力。 大语言模型是具有大规模参数的深度学习模 型,通过对海量文本的训练习得语言的统计规律, 从而具有理解和生成自然语言的能力,实现人机之 间的有效通信。自2018年双向编码表示模型(bidirec⁃ tional encoder representations from pre-trained transformer,GPT),人工智能领域 自然语言处理方向的重大突破,引领了大规模预训 练模型及应用研究的热潮。大语言模型技术的迅猛 进展正深刻地影响着机器系统智能化的轨迹,标志 着进入一个新的人工智能时代。从 BERT 到 GPT [1-2], 这些模型通过深度学习和海量数据训练,不仅推动了 自然语言处理技术的边界,也正在改变知识获取和创 新的模式,将对应急管理体系发展、能力要求以及实 金(20BZZ037), 广 东 省 哲 学 社 会 科 学 规 划 项 目 (GD24XGL075)资助 *通信作者简介 黄欢(1976— ), 男, 湖南常德人, 硕士, 助理研究员。 基于大语言模型技术的智慧应急应用: 知识管理与应急大脑 龚 晶 1 黄 欢 2,* (1. 暨南大学 公共管理学院/应急管理学院,广州 510632;2. 暨南大学 党委政治保卫部/人民武装部,广州 510632)20 积分 | 8 页 | 3.21 MB | 1 天前3
电子行业AI+系列专题:边缘AI,大语言模型的终端部署,推动新一轮终端需求-20230531-国信证券-25页请务必阅读正文之后的免责声明及其项下所有内容 证券研究报告 | 2023年05月31日 超 配 电子 AI+系列专题报告 边缘 AI:大语言模型的终端部署,推动新一轮终端需求 核心观点 行业研究·行业专题 电子 超配·维持评级 证券分析师:胡剑 证券分析师:胡慧 021-60893306 021-60871321 hujian1@guosen.com.cn huhui2@guosen 特征是通过海量数据,无需标注自监督学习,训练一个基础大模型,并在各 领域将其专业化。据相关论文,当模型的参数量大于某阈值,会展现出类似 推理、无监督学习等未曾出现的能力,这种现象被称为“涌现”,因此目前 大语言模型参数均在十亿量级以上。同时,Deepmind 研究表明,模型参数的 上涨需要配合等比例上升的优质数据集来达到最佳训练效果。因此,大模型 参数在十亿级以上发展并受限于优质数据集的增速是 AI 发展的必然趋势。 8GHz 的占比 36%,价格在 1000 美金以上的占比 13%,即旗舰机型占比较低,随着 AI 大模 型在边缘端落地,有望推动新一轮换机潮。 以大语言模型为核心,以语言为接口,控制多 AI 模型系统,构建“贾维斯” 式智能管家。我们认为大语言模型不仅可以实现对话、创意,未来也有望作 为众多复杂 AI 模型的控制中心,同时也是接受用户指令的交互窗口,实现 《钢铁侠》电影中“贾维斯”式综合智能管家。230 积分 | 25 页 | 2.20 MB | 6 月前3
电子行业AI+系列专题:边缘AI,大语言模型的终端部署,推动新一轮终端需求-20230531-国信证券-25页请务必阅读正文之后的免责声明及其项下所有内容 证券研究报告 | 2023年05月31日 超 配 电子 AI+系列专题报告 边缘 AI:大语言模型的终端部署,推动新一轮终端需求 核心观点 行业研究·行业专题 电子 超配·维持评级 证券分析师:胡剑 证券分析师:胡慧 021-60893306 021-60871321 hujian1@guosen.com.cn huhui2@guosen 特征是通过海量数据,无需标注自监督学习,训练一个基础大模型,并在各 领域将其专业化。据相关论文,当模型的参数量大于某阈值,会展现出类似 推理、无监督学习等未曾出现的能力,这种现象被称为“涌现”,因此目前 大语言模型参数均在十亿量级以上。同时,Deepmind 研究表明,模型参数的 上涨需要配合等比例上升的优质数据集来达到最佳训练效果。因此,大模型 参数在十亿级以上发展并受限于优质数据集的增速是 AI 发展的必然趋势。 8GHz 的占比 36%,价格在 1000 美金以上的占比 13%,即旗舰机型占比较低,随着 AI 大模 型在边缘端落地,有望推动新一轮换机潮。 以大语言模型为核心,以语言为接口,控制多 AI 模型系统,构建“贾维斯” 式智能管家。我们认为大语言模型不仅可以实现对话、创意,未来也有望作 为众多复杂 AI 模型的控制中心,同时也是接受用户指令的交互窗口,实现 《钢铁侠》电影中“贾维斯”式综合智能管家。2310 积分 | 25 页 | 2.20 MB | 5 月前3
智能技术赋能人力资源管理 2024AI 技术在 HR 领域的应用情况 Part2:认识大语言模型:从原理到应用 Part3:体验大语言模型:使用者的认知与探索 Part4:企业中的大语言模型:价值与实现基础 █ 大语言模型对企业的价值 █ 大语言模型的价值实现基础 Part5:HR 中的大语言模型:影响与应用 █ 大语言模型对 HR 的影响 █ 大语言模型在企业 HR 部门的应用情况 参考资料 参调样本 得以适应文字、 图片、音频等各类任务。在众多的大模型技术中,大语言模型有着更为广泛的应用场景,也受着资本投入的青睐。 它可以帮助 C 端用户完成大量的文字类工作,回答他们的各类问题;同时也可以与 RPA 等技术结合,为 B 端 用户带来更好的流程体验。 经济学家约瑟夫 • 熊彼特所提出的“创造性破坏”可以较为贴切地概括大语言模型为企业带来的影响。 熊彼特认为,创新会破坏企业内部的旧结构, 会打破已有 的市场均衡,为企业带来超额利润。同样,大语言模型作为技术的创新,也会为企业带来效率提升、成本降低 等利好,也会带来管理与竞争模式的变化。作为企业重要的支持部门,HR 部门也同样面临着变化与创新。 上述的利好与变化是企业管理者们、HR 从业者们所关注的,也是本研究报告的出发点。由于大语言模型 是人工智能技术中的一个类别,大语言模型在 HR 领域的运用情况很大程上取决于企业对于人工智能技术的关10 积分 | 90 页 | 10.60 MB | 5 月前3
2025年智能之光:⼈机协作的经济管理研究新时代报告-北京大学中国经济研究中心胡诗云,易君健∗ 2025 年 6 月 摘要: 以 ChatGPT 和 DeepSeek 为代表的人工智能大语言模型(简称大模型),正在对知识工作者的生产方 式产生革命性的影响。本文面向经济管理学科的研究者,介绍大模型的技术原理、应用方式以及在科学研究全 流程中的应用。本文首先从社会科学和大语言模型的本质出发,分析了认知自动化的边界,指出围绕理论工作 的能力是人类科学家在人工智能时代的核心能力。 建议。大模型全面融入学术工作流程,不仅能通过自动化重复劳动提高研究效率,更能通过人机合作扩展人类 思维的广度和深度,经济管理研究即将走向人机协作的新时代。 关键词: 人工智能;经济学方法论;人机协同;大语言模型 JEL Codes: A11;B41;C45;D83 ∗胡诗云,北京大学国家发展研究院,博士研究生,电子邮箱:hushiyun@pku.edu.cn。易君健,北京大学国家发展研究院,教授,(联系方式)。作者 . . . . . . . . . . 9 3 祛魅 AI:大模型的基本原理 10 3.1 大语言模型的定义和历史 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 大语言模型的数学结构 . . . . . . . . . . . . . . . . . . . . .0 积分 | 62 页 | 2.45 MB | 1 天前3
基于大模型的具身智能系统综述然后, 对不同具身智能系统架构进行介绍, 并总结了目前具身智能模型的数据来源, 包括 模拟器、模仿学习以及视频学习; 最后, 对基于大语言模型 (Large language model, LLM) 的具身智能系统面临的挑战与发 展方向进行讨论与总结. 关键词 大语言模型, 大型视觉模型, 基础模型, 具身智能, 机器人 引用格式 王文晟, 谭宁, 黄凯, 张雨浓, 郑伟诗, 孙富春. 基于大模型的具身智能系统综述 intelligence, AI) 技术提高具身智能的表 现则成为学界与产业界的关注重点. 最近的研究表 明, 通过扩大语言模型的规模, 可以显著提高其在 少样本学习任务上的表现, 以 GPT-3 (Generative pre-trained transformer 3)[4] 为代表的大语言模型 (Large language model, LLM) 在没有进行任何参 收稿日期 2024-08-01 仅通过文本交互来指定任 务和少样本示例就能很好地完成各类任务. 在此之 后, 具有优秀泛化能力与丰富常识的基础模型在计 算机视觉、自然语言处理等领域都展现出令人瞩目 的效果. GPT-4[5]、LLaMA[6]、LLaMA2[7]、Gemini[8]、 Gemini1.5[9] 等大语言模型能与人类进行流畅的对 话, 进行推理任务, 甚至进行诗歌和故事的创作; BLIP (Bootstrapping language-image20 积分 | 19 页 | 10.74 MB | 1 天前3
DeepSeek大模型及其企业应用实践大模型可以从大量的数据中学习, 并利用学到的知识和模式来提供 更精准的答案和预测。这使得它 们在解决复杂问题和应对新的场 景时表现更加出色 学习能力强 大模型可以生成更自然、更流利 的语言,减少了生成输出时呈现 的错误或令人困惑的问题 语言生成能力 学习到的知识和能力可以在不同 的任务和领域中迁移和应用。这 意味着一次训练就可以将模型应 用于多种任务,无需重新训练 可迁移性高 1.2 大模型的发展历程 ,预训练大模型包含了预训练大语言模型(可以简称为“大语言模 型”),预训练大语言模型的典型代表包括OpenAI的GPT和百度的文心ERNIE,ChatGPT是基于GPT开发的大模型产品, 文心一言是基于文心ERNIE开发的大模型产品 人工智能 机器学习 深度学习 深度学习模型 预训练模型 深度学习 预训练大模型 预训练 大语言模型 预训练大语言模型 GPT 文心ERNIE 文心ERNIE ... ChatGPT 文心一言 1.4 大模型的分类 语言大模型 视觉大模型 多模态大模型 是指在自然语言处理(Natural Language Processing,NLP)领域中的一类大模型,通常 用于处理文本数据和理解自然语言。这类大模型 的主要特点是它们在大规模语料库上进行了训练, 以学习自然语言的各种语法、语义和语境规则。 代表性产品包括GPT系列(OpenAI)、Bard10 积分 | 147 页 | 16.82 MB | 5 月前3
大模型时代的AI教育:思考与实践2024智能(Intelligence):以模型为核心,是对真实世界的模拟和解释 人类智能 • 抽象(语言):概念,数字,理念 • 逻辑(理性):归纳,演绎,类比 • 计算(模型):科学方法 • 基于观测经验,发现规律 • MIT:一切问题都是模型问题 • 模型:一个映射,一个函数 科学范式 • 用语言逻辑方法获取理论模型:模糊 • 用解析数学方法获取数学模型:精确 • 用计算数学方法获取数据模型:近似 Diffusion、transformer ◼ 从NLU+NLG到LLM(大语言模型) 1. 语言逻辑和数据集蕴含了人类的认知智能 2. LLM是人类的认知智能的实现方式之一 3. LLM的原理很简单;工程很复杂;效果很神奇 01 对AI技术的认知:大模型的能力边界 用人工神经网络获取网络模型:深度学习-Transformer模型-大语言模型 大语言模型的核心原理:数据化-语义化-NTP(Next Token Token Prediction) 大语言模型的三层能力:语言能力-知识能力-推理能力 1. 语言能力:一本正经地说话,语言顺畅,GPT时达到 • NLG+NLU:语言理解、语言表达(包括温度和情商) • 人类语言、代码语言、XX语言 2. 知识能力:海量公开知识,言之有物,GPT-2时达到 • 顺带学习(基座模型):文字中蕴含了知识 • 压缩:幻觉 • 遗忘:微调(迁移学习),尤其是RLHF10 积分 | 36 页 | 4.04 MB | 5 月前3
2025年DeepSeek-R1Kimi 1.5及类强推理模型开发解读报告DeepSeek-R1 \ Kimi 1.5 及 类强推理模型开发解读 北大对齐小组 陈博远 北京大学2022级“通班” 主要研究方向:大语言模型对齐与可扩展监督 https://cby-pku.github.io/ https://pair-lab.com/ 2 Outline ➢ DeepSeek-R1 开创RL加持下强推理慢思考范式新边界 ➢ DeepSeek-R1 Zero 技术剖析:DeepSeek-R1 Zero DeepSeek-R1 Zero的关键启示 ➢ 传统RLHF背景下,SFT通常被认为是不可或缺的一步,其逻辑先用大量人工标注的数据来让模型 初步掌握某种能力(如对话或者语言风格),然后再用RL来进一步优化性能 ➢ DeepSeek-R1 系列跳过对于大规模人工标注数据的依赖 ➢ 无需构建和维护高质量的SFT数据集,而是让模型直接在RL环境中进行探索 ➢ 类比:初 languagemodels.co/p/the-illustrated-deepseek-r1 15 DeepSeek-R1 技术 Pipeline 总览 ➢ DeepSeek-R1 Zero 的问题:长推理过程可读性差、语言混合,帮助性低 ➢ Research Questions: ➢ 能否在Zero基础上兼顾推理性能的同时,提升模型的帮助性和安全性?例如产生 Clear & Coherent CoT 并且展现出通用能力的模型10 积分 | 76 页 | 8.39 MB | 5 月前3
共 360 条
- 1
- 2
- 3
- 4
- 5
- 6
- 36
