基于大语言模型技术的智慧应急应用:知识管理与应急大脑
3.21 MB
8 页
0 下载
3 浏览
0 评论
0 收藏
| 语言 | 格式 | 评分 |
|---|---|---|
中文(简体) | .pdf | 3 |
| 概览 | ||
应急管理体系和能力是国家治理体系和治理能 力的重要组成部分,加强应急管理体系和能力建设, 对于防范化解重大安全风险、及时应对处置各类灾 害事故,保护人民群众生命财产安全和维护社会稳 定具有重要意义。智慧应急是应急管理信息化建设 的总体目标,强调要适应科技信息化发展大势,以信 息化推进应急管理现代化,提高监测预警、监管执 法、指挥决策、救援实战、社会动员等应急管理能力。 大语言模型是具有大规模参数的深度学习模 型,通过对海量文本的训练习得语言的统计规律, 从而具有理解和生成自然语言的能力,实现人机之 间的有效通信。自2018年双向编码表示模型(bidirec⁃ tional encoder representations from transformer,BERT) 的出现,以及 2022 年第四代生成式预训练模型(gen⁃ erative pre-trained transformer,GPT),人工智能领域 自然语言处理方向的重大突破,引领了大规模预训 练模型及应用研究的热潮。大语言模型技术的迅猛 进展正深刻地影响着机器系统智能化的轨迹,标志 着进入一个新的人工智能时代。从 BERT 到 GPT [1-2], 这些模型通过深度学习和海量数据训练,不仅推动了 自然语言处理技术的边界,也正在改变知识获取和创 新的模式,将对应急管理体系发展、能力要求以及实 践操作产生深远的影响。在技术进步的强大动力牵 引下,需要重新审视并优化应急管理信息化建设路 收稿日期 2023-10-19 录用日期 2024-01-12 国 家 社 会 科 学 基 金(20BZZ037), 广 东 省 哲 学 社 会 科 学 规 划 项 目 (GD24XGL075)资助 *通信作者简介 黄欢(1976— ), 男, 湖南常德人, 硕士, 助理研究员。 基于大语言模型技术的智慧应急应用: 知识管理与应急大脑 龚 晶 1 黄 欢 2,* (1. 暨南大学 公共管理学院/应急管理学院,广州 510632;2. 暨南大学 党委政治保卫部/人民武装部,广州 510632) Applications of Large Language Models in the Intelligent Emergency Management: Knowledge Management and Emergency Management Brain GONG Jing1 HUANG Huan2, * (1. School of Public Management/ School of Emergency Management, Jinan University, Guangzhou 510632, China; 2. Department of Political Security of Party Committee/ Department of People’s Armed Forces, Jinan University, Guangzhou 510632, China) Abstract Technologies of large language models are not only a major breakthrough in the direction of natural language processing within the artificial intelligence field, but also transforming patterns of knowledge acquisition and innovation. The principles of knowledge acquisition and innovation of large language models are studied, their potential applications in the construction of information systems for emergency management are explored. It addresses the challenges currently faced in the intelligent emergency management and the limitations of intelligence level of the service systems. A knowledge management mode of reconfiguration intelligence emergency based on large language model technology is proposed. On such basis, the emergency management brain which can collaboratively innovate, percept in all-domain, and support decision-making is conceived so that the intelligence level of the whole service system can be improved from the perception intelligence to cognitive intelligence. Key words large language models, intelligent emergency management, knowledge management, emergency management brain Citation GONG J, HUANG H. Applications of large language models in the intelligent emergency management: knowledge management and emergency management brain[J]. Journal of Command and Control, 2025, 11(2): 217-224 摘 要 大语言模型不仅是人工智能领域自然语言处理方向的重大突破,也正在改变知识获取与知识创新的模式。在研究大语 言模型的知识获取与创新的原理之上,探讨了其在应急管理信息化建设中的应用,针对智慧应急中面临的建设困境以及业务系 统智能化水平的局限,提出了基于大语言模型技术重构智慧应急的知识管理模式,在此基础上构想能够协同创新、全域感知、 决策支持的应急大脑,从而实现整体业务系统智能化水平从感知智能到认知智能的提升。 关键词 大语言模型,智慧应急,知识管理,应急大脑 引用格式 龚晶,黄欢. 基于大语言模型技术的智慧应急应用:知识管理与应急大脑 [J]. 指挥与控制学报,2025,11(2):217-224 DOI 10.20278/j.jc2.2096-0204.2024.0158 指 挥 与 控 制 学 报 JOURNAL OF COMMAND AND CONTROL 第11卷 第2期 2025年4月 Vol. 11,No. 2 April,2025 www.jc2.org.cn 11卷 指 挥 与 控 制 学 报 径,使其适应人工智能大模型时代的治理要求。 本文在分析大语言模型的知识获取原理与知识 创新的潜能之上,探讨了其在应急管理信息化建设 中的应用前景,针对当前智慧应急中面临的挑战以 及业务系统智能化水平的局限,提出了基于大语言 模型技术重构智慧应急的知识管理模式以及应急大 脑的概念框架,为应急管理信息化建设提供了新的 视角和技术路径。 1 大语言模型原理 大 语 言 模 型 通 过 词 嵌 入(word embedding)[3]、 Transformer 架构和注意力机制[1,4]、端对端神经网络 训练等方法和技术学习文本数据中的语义和语法规 律,从而具有理解文本并生成语法正确、语义连贯 的文本的能力。当训练的数据足够大,模型的参数 足 够 多 ,模 型 开 始 涌 现 某 些 能 力(emergent abili⁃ ties)[5],不仅能够理解和生成自然语言,还具有抽象 和推理的能力[6],能在艺术创作、代码编写、科学研 究等多个领域展现出类似人类水平的创造力。这些 能力的涌现,使得知识创新不再受限于个体的认知 和经验,能够打破学科和专业的壁垒,加速知识的 融合和创新,预示着知识生产方式正在经历一场深 刻的变革,将引领我们进入了一个人机协作的知识 生产新模式 [7-8]。 1.1 知识获取 1.1.1 联结主义学习 大语言模型的知识获取基于联结主义的学习观 点,该观点认为智能源于大脑神经元的物理结构和 复杂的网络连接,是由大量如神经元的简单元素通 过非线性相互作用产生的集体行为结果,智能行为 的模拟可以通过构建大量简单计算单元组成的大规 模 网 络 ,并 不 断 调 整 网 络 单 元 间 连 接 权 重 来 实 现[9-10]。优势在于从数据中学习的能力,善于处理复 杂的、模糊的问题。 1.1.2 主动学习 与传统结构化的知识获取方式相比,大模型采 用自监督学习方法,主动捕捉训练文本中更深层次 的特征和规律,而非在预设知识结构下的信息抽 取[11],从而具有突破已有认知局限实现创新的潜能。 1.1.3 数值计算过程 模型通过优化其预测下一个单词(如 GPT)或填 充缺失单词(如 BERT)的能力,来调整多层神经网络 模型的内部大量神经元连接权重参数,实现对知识 的获取。这一参数调优过程在连续平滑数值空间进 行,与符号化表示的知识获取中的离散符号操作相 比,可以捕捉更为复杂和细致的规律,实现对过往 经验的超越。 1.1.4 知识分布式隐式表示 与符号化知识表示不同,模型获取的知识内嵌 于神经网络模型的海量参数中,无需对其进行显式 表示,这种分布式隐式表示能够处理符号化知识表 示无法处理的情况,例如,无法言明的复杂知识。 1.2 知识创新 1.2.1 科学发现 最近的一些研究也证实了大语言模型技术在科 学研究中知识创新的潜能[12-13]。利用自然语言处理 技术从大量的科学文献中自动提取知识,生成研究 假设,驱动科学试验,开启了科学发现的新模式。 材料科学领域的研究人员利用无监督词嵌入技术自 动学习该领域科学文献,通过高维向量空间的位置 关系分析不仅能捕捉材料结构、属性、元素周期表 等抽象概念,还能发现隐藏的结构-属性关系,从而 找到新的热电材料[14]。利用人工智能技术捕捉人类 未充分探索领域的隐性联系,从而形成新的知识结 构,推动学科知识创新,是一种科学发现模式的创 新,开启了科学知识创新的新途径[15-16]。 1.2.2 多模态数据挖掘 大语言模型技术并不仅限于文本数据,也可用 于理解和生成包括图片、音频、视频等多种类型的 数据。例如,Sora 采用 Tansformer 架构重建图片处理 的扩散模型(diffusion models),能更准确地理解视频 片段(patches)在向量空间的正确时空关系,从而生 成接近现实的合乎逻辑又平滑过渡视频[17]。这种多 模态数据处理能力能够形成一个综合的多模态知识 表示,促进多模态数据的理解和融合,从而让模型 具有跨模态知识挖掘和创新的潜能。如图 1 所示, 现实世界的信息、状态和变化通过不同的媒介和技 术手段,可以转化为文本、图片、音频、视频、信号 等符号描述,如果说文本数据是对现实世界在文字 符号规则下的一个投影,那么图片、视频、传感器信 号等不同数据都可以看作是现实世界在不同符号规 则下的多个投影,大语言模型技术具有在高维数字 空间融合不同符号世界信息的潜能,利用高维空间 的多模态知识表示,能促进不同符号世界信息的理 解、交流和融合,提供在一个更全面、完整、系统的 218 www.jc2.org.cn 2期 认知结构下对现实世界的事物,及其规律的新发现和 深入理解,从而推动知识结构的不断迭代与演进。 图1 基于大语言模型技术的多模态数据挖掘 Fig. 1 Multi-modal data mining based on large language models technologies 1.2.3 人机协同创新 大语言模型在获取语言知识的同时,也获得了语 言描述的关于世界的知识,从而让机器具有理解和生 成自然语言的能力,让人与机器在知识层面的有效交 互成为可能。基于大语言模型技术的人机协同创新 模式,将人的认知优势与计算机的计算与存储优势整 合起来,让人可以在更高层次、更广泛视角研究外部 环境,加深对客观世界规律的认识,并在人机交互中 将知识转移到机器上,提高机器智能 [18]。 2 智慧应急面临的挑战 应急管理信息化建设通过促进信息技术与应急 管理业务深度融合,为应急管理实战提供支撑保障。 一个典型的应急管理系统架构如图 2 所示,从下至 上依次包括: 数据库层:为应急管理业务应用提供数据服务, 包括风险隐患、应急避难场所、应急物资、应急部 门、救援队伍等应急业务对象的主题数据库,以及 监测预警、安全生产、监管执法、指挥救援、社会动 员等重点业务的专题数据库。包括结构化数据、半 结构化数据和非结构化数据。 知识库层:为应急管理业务应用智能化提供知 识服务,主要存储管理法律法规、典型案例、应急预 案、方法和模型等应急知识。 业务应用层:覆盖应急管理全过程,包括监测预 警、社会动员、监管执法、救援处置等应急管理全场 景应用。 决策指挥层:为所有应急管理业务辅助决策。 2.1 辅助决策功能薄弱 决策指挥层的辅助决策功能相对比较薄弱,尤 其是在重大及以上级别的突发事件非常态业务的临 图2 应急管理系统架构图 Fig. 2 The architecture diagram of emergency management system 龚晶等:基于大语言模型技术的智慧应急应用:知识管理与应急大脑 219 www.jc2.org.cn 11卷 指 挥 与 控 制 学 报 机 决 策(improvisational decision-making) [19],需 要 随 事件不断发生、发展的态势,针对具体问题情境作 出决策时,系统通常以数据统计分析、智能计算模 型算法等形式提供辅助决策功能,对于决策者来说, 这些远不足以应对其可能面临的复杂多变灾难环境 下的决策需求,即解决复杂问题的能力。 从决策问题的本质来分,常规决策面临的是问 题空间明确的结构化问题,临机决策则是模糊不清 的非结构化(或半结构化)问题 [20]。如图 3所示,问题 空间明确的常规决策是理性分析的过程,即:分析评 估备选方案并确定最优方案。系统可以提供更精确 的数据、更优化的数据处理流程、更智能的模型和 算法等方式,来辅助最优方案选择。当问题空间不 明确,则只能依靠决策者直觉判断进行临机决策。 图3 决策分析的两条路径 Fig. 3 Two approaches to decision-making analysis 2.2 知识管理缺陷 目前的知识库中所存储和管理的应急知识仅限 于应急预案、行动指南、历史案例、法律规范等显性 知识,缺乏诸如专家知识这一类在长期专业工作中 积累的经验、技能、组织记忆等隐性知识。显性知 识通常适用于常规决策中结构化问题的解决,隐性 知识则是临机决策能力提升的关键 [19,21]。然而,知识 管理模式不适用无法言明的、复杂的隐性应急知识, 这类重要的应急知识游离在系统之外,这也是制约 辅助决策功能的客观局限。 2.3 环境适应性挑战 应急管理实践需要应对自然环境、政治经济环 境、社会文化环境以及技术环境等多个方面带来的 对公共安全的威胁和挑战。当前系统缺乏适应外部 环境变化的能力,特别是在监测预警和救援处置应 用中,当面临新的、未知风险时,当处于复杂多变的 灾害(难)情境时,现有的业务系统往往表现不佳, 无法快速识别并积极应对潜在的风险和应急需求。 虽然也引入了一些模型和算法解决一些特定场景的 问题,但整体而言仍属于打补丁式的被动应对,缺 乏系统的、持续的学习机制来增强应变能力。 2.4 人机协作不足 人的优势包括创造力、认知力、价值判断等,机 器的优势在于计算能力、存储能力等,系统智能的 提升在于将人的能力与机器的能力有效整合[18]。系 统中人机协作的效率和效果仍然受到人机协作的自 然度、信息处理能力、交互系统智能水平、工作流程 等方面的制约,缺乏有效的机制将人的优势与机器 的优势整合起来。 2.5 智能层次局限 通过引入大数据、人工智能技术系统智能化水 平得到了较大提高,例如,视频识别技术应用在安 全监管中实现的安全生产风险智能监测预警,无人 机及快速建模技术在应急救援中实现的灾害环境智 能感知等。这些技术侧重外部世界数据的收集和处 理,加强了系统的视觉、听觉和触觉等感知能力,使 得应急系统能够及时捕捉外部环境变化。按照机器 智能水平由低到高的 4 个层次:数据智能、感知智 能、认知智能和自主智能[22],应急系统的智能水平达 到了感知智能这一层次。 从认知智能层次来看,当前系统思维能力不足, 缺乏解决复杂问题的能力。下一步系统智能化发展方 向是认知智能的加强,即系统具有类似于人的逻辑思 维和高级认知能力,能够处理和解释复杂信息,通过 思维能力获得事物本质特征与发展规律更深入的认 识,从而具有能够适应新环境并解决复杂问题的能力。 按照过去信息化建设经验,提升系统智能化水 平有两条路径:1)依靠对智能化应急装备设施的不 断更新换代;2)引入更多更强大的模型和算法对数 据进行更深层次的挖掘。前者的问题在于依靠设备 设施更新更多解决的是业务系统的效率问题,并且 技术进步如果仅仅是“穿新鞋走老路”的模式,终将 面临发展的瓶颈[23]。后者的问题在于模型算法更适 用于解决问题路径清晰的应用情景,而问题本身模 糊不清恰恰是应急管理面临挑战的主要特点[20]。因 此,按照以往经验很难实现认知智能的突破。 机器认知智能的实现通常从学习和理解能力开 始[22],即围绕对知识的表示、获取、创新和应用等活 动展开,无法仅通过对数据处理的加强来实现。大 语言模型在知识获取、知识共享、知识创新、知识应 用等方面都取得了革命性突破,如图 4所示,需要抓 住大语言模型技术的发展契机,重构应急管理领域 220 www.jc2.org.cn 2期 的知识管理模式,进一步提升系统智能化水平。 图4 大语言模型的知识管理模式 Fig. 4 The mode of knowledge management by large language models 3 基于大语言模型的智慧应急大脑概念框架 3.1 基于大语言模型的应急知识管理模式 应急管理知识是一个更广阔的、跨学科的社会和 经济情境中创造出来的,涉及到自然灾害、事故灾 难、公共卫生、社会安全等多个领域,覆盖了从突发 事件预防、准备、响应到恢复的全过程[24],既包括能 明码表示的显性知识,还包括隐性知识,也称默会知 识,例如,应急管理人员的个人经验、技能等长期实 践经验中积累的、难以明确表达的知识,这些知识可 能表现为对特定事件的常识性理解、对不同灾害类型 的应对策略的抽象化认知等。应急部门知识除了各 类预案、行动指南、管理准则等可以言明的显性知识 之外,还包括与这些预案、指南、准则设计布局相关 的隐性知识,暗含在该
| ||
下载文档到本地,方便使用
共 8 页, 还有
6 页可预览,
继续阅读
文档评分


基于多源信息融合的应急响应优化与仿真解决方案(52页 PPT)