算力与场景双驱动,智能软件研发进入“平台 服务”融合新阶段 头豹词条报告系列国标分类/信息传输、软件和信息技术服务业/软件和信息技 术服务业/软件开发、头豹分类/信息传输、软件和信息技术 服务业/软件和信息技术服务业/软件开发 Copyright © 2025 头豹 2 智能软件研发:算力与场景双驱动,智能软件研发进入“平台+服 务”融合新阶段 头豹词条报告系列 饶立杰、饶立杰RLJ 2025-07-11 未经平台授权,禁止转载 行业分类: 信息传输、软件和信息技术服务业/软件开发 信息传输、软件和信息技术服务业/软件开发 智能软件研发行业是指专注于开发和应用具有人工智能(AI)技术的软件系统与服务,为各行各业提供智能化解决方案,旨在提升业务效 率、优化决策过程、增强用户体验及创造新的价值和服务模式的创新性技术领域。在数字化转型的背景下,各行各业对智能软件的需求日益增 长。未来,智能软件将更加注重个性化和用户体验。通过深入了解用户需求,开发者将能够开发出更符合用户期望的产品与服务,提高用户满意 政策名称 《质量强国建设纲要》 颁布主体 中共中央,国务院 生效日期 2023-01-01 影响 7 政策内容 推动制造业高端化、智能化、绿色化发展,大力发展服务型制造。同时,加快大数据、网络、人工智能等新技术的深度应用,促进现代服务业与先进制造业、现代农 业融合发展。 政策解读 该政策旨在,推动智能软件研发行业提升产品质量和创新水平,强调标准化、安全性与用户体验,促进技术自主可控,鼓励企业加大研发投入,增强国际竞争力,支10 积分 | 18 页 | 5.48 MB | 4 月前3
大模型技术深度赋能保险行业白皮书151页(2024)配、模型评测等关键环节的技 术要点和注意事项,为行业同仁提供理论指导和操作建议。除此之外,成功的落地应用需要 保险公司和科技公司紧密合作,共同构建开放、共享、协同的创新生态。这些内容为保险行 业探索大模型技术的应用提供了宝贵的经验和启示。 在优秀案例展示部分,白皮书通过一系列具有代表性的案例,充分展示了大模型技术 在保险行业的广泛应用场景和显著价值。这些案例涵盖了客户服务、理赔定损、营销推广、 务效率、优化客户体验、降低运 营成本、增强风险管理能力等方面的巨大潜力,为保险行业的智能化转型提供了有力的实 践支撑。 更重要的是,我们深刻认识到大模型技术与保险行业的深度融合,不仅将推动保险业 务模式的深刻变革,还将重塑保险行业的竞争格局和生态体系。通过精准预知风险、主动管 理风险,大模型技术将助力保险公司实现从“粗放预测”向“精准预知”、从“等量管理”向“减 量管理”的转型升级。这 个性化、高效、便捷的保险服务,推动保险行业向更高质量、更高效率、更高附加值的方向 发展。 在全球金融格局深刻调整、中国经济高质量发展的背景下,保险业作为国民经济的重 要支柱和风险管理的重要力量,必须紧跟时代步伐,把握科技革命的历史机遇。我们希望通 过本白皮书的发布,为保险业做好科技金融和数字金融两篇大文章提供有力支持,推动保 险行业从科技赋能向科技引领的转变。同时,我们也呼吁行业同仁和合作伙伴加强交流与20 积分 | 151 页 | 15.03 MB | 1 月前3
CAICT算力:2025综合算力指数报告更深刻地改变着社会的方方面面。目前,国家正按照“点、链、网、面”体系化 推进全国一体化算力网络工作,综合算力指数作为衡量我国算力发展水平的重 要标尺,相关研究工作意义深远。 随着 AI 在千行百业加速渗透,算力赋能数字经济社会的效能,不仅仅取决 于算力、存力、运力以及发展环境本身,模型能力也成为决定人工智能深度赋 能的关键。因此,中国信通院研究团队持续优化综合算力指标体系,在往年基 础上 1 一、综合算力研究背景 (一)算力需求爆发式增长,全球竞争日益激烈 随着人工智能、大数据、工业互联网等新技术规模化应用,全 球算力需求呈现指数级增长。从智能工厂中精准控制生产设备的工 业机器人,到智能交通里实时规划路线的导航系统,再到个性化推 荐服务背后复杂的算法运算,各类数字化场景都高度依赖强大、稳 定且高效的算力支撑。特别是在智能化进程加速推进的背景下,智 算需求更呈现出一 在人才储备、技术创新以及资金投入等方面仍相对不足。中西部地 区产业仍以传统资源型产业和劳动密集型产业为主,数字化转型的 动力相对薄弱,具备巨大的算力发展潜力和市场空间。 区域差距的扩大既会加剧经济发展的不平衡,也会制约全国产 业数字化的整体进程。研究综合算力指数有助于促进我国各区域充 分利用优势要素,挖掘区域发展需求,合理配置算力资源;加速算 力与产业深度融合,全方位驱动产业数字化转型进程,催生新业态、 新模式;缩小区20 积分 | 54 页 | 4.38 MB | 1 月前3
人工智能技术及应用(56页PPT-智能咨询、智能客服)宏观数据 GDP( 国内生产总值 ), 变劢率 ;CPI( 居民消费价格指数 ), 变劢 率 ;PPI( 工业生产价格指数 ), 变劢率 ;M1/M2( 货币流通量 ); 固 定资 产投资变劢 ; 制造业采贩经理人指数 ; 进出口贸易额 ; 外 资投资增 减额 ; 工业总产值 ; 股市交易行情及成交量 ; 央行黄 金及外汇储备 ; 通胀指数 贵金属 国际 / 国内交易行情 , 交易量 ; 被收购公司:背景久安建设投资集团有限公司 收购比例: 49.85% --- 研报名称:拟全资控股北京久安,增强公司市政工程实力 上下游: 1. 分析师:华魏 上下游:碧水源拥有污水处理技术人才及产品研发优势,双方属水处理产 业链上下游关系。 --- 研报名称:拟全资控股北京久安,增强公司市政工程实力 政策: 1. 分析师:庞琳琳 政策名称:水十条 ---- 研报名称:尘埃落地,水处理巨头再起航 2. 分析师:庞琳琳 政策名称:国家推广 媒体 媒体 1 、江苏阳光以无限售流通股 10,000 万 股 质押给恒丰银行无锡分行 2 、江苏阳光以法人股 3500 万股向中国 农 业银行江阴市支行贷款 4200 万元, 并向 江阴支行提供质押担保 3 、江苏阳光为控股子公司宁夏阳光硅业 有限公司提供担保 4 、海润光伏用价值 1000 万元房产为江 苏 阳光向中国银行江苏分行提供连带责 任担 保 案例:某国有银行企业风险预警10 积分 | 55 页 | 5.54 MB | 1 月前3
从大模型、智能体到复杂AI应用系统的构建(61页 PPT)• 开源仓库获得 2 万多次收藏 ,获得国际测试委员会颁 发 的 2022-2023 百大开源成就奖 , Demo 系统获得 Hugging Face Space Top 10 ; • 工 业 界 影 响 : 受 到 Hugging Face 、 Langchain 、 ModelScope 等团队关 注 , 推出相 应 的 产品和 功能: Transformers Agent :分段互补合作模 式 终端 制造 技术标准 核心专利 核心器件 高端设备 基础支撑保障 供应风险 政府决策需求 企业创新需求 航空航天、轨道交通、新材料、新能源、电子信息等战略产业、未来产业对产 业信息智能分析提出重大需求,呈现广泛、持续增长的发展态势。 产业发展决策:广阔的社会需求 关键核心技术突破 创新链产业链融合 科技创新体系优化 产业创新生态营造 技术创新路径规划 数字化转型方案 一些具有战略意义的新兴产业 和领域将得到重点扶持,从而加速其发展和壮大 AI 推动“科技创新”和“产业创新”的深度融 合 推 动 创 新 链 、 产 业 链 、 资 金 链 、 人 才 链 深 度 融 合 是 解 决 当 前 乃 至 未 来 较 长 时 间 内 加 强 产 业 创 新 发 展 、 加 快 锻 造 新 质 生 产 力 的 重 要 抓手 行业知识更深 业务流程更深 产业网链大模型 招商服务20 积分 | 61 页 | 13.10 MB | 1 月前3
审计领域接入DeepSeek AI大模型构建Agent智能体提效设计方案(204页 WORD)DeepSeek 作为新一代大语言模型(LLM)技术平台,其核心 优势在于多模态数据处理、复杂逻辑推理和行业知识融合能力。该 技术采用混合专家模型(MoE)架构,通过万亿级 token 的审计行 业语料预训练,在会计准则、税务法规、风险识别等垂直领域展现 出超过 85%的准确率。其知识截止 2023 年的特点,确保了在审计 政策时效性方面的可靠性,例如能够准确识别 2022 年财政部新修 订的收入确认准则(财会〔2022〕25 号等最新准则条款 | 合规问题发现率提高 28% | 具体到审计效率提升路径,DeepSeek 可构建端到端的智能辅 助系统:在计划阶段自动生成风险矩阵,基于被审计单位行业特征 (如制造业存货周转率异常阈值设定为±30%);在执行阶段实现 凭证抽查的智能分层抽样,某试点项目证明可使抽样量减少 45%同 时保持 95%的置信水平;在报告阶段支持自动生成管理层建议书初 稿,包含可操作建议点数量平均提升 审计知识库构建采用双通道更新机制,包含以下关键组件: - 法规标准库:实时同步财政部最新审计准则、企业会计准则等权威 文件,版本控制精确到修订条款级 - 行业风险特征库:按制造业/金 融业等 15 个细分行业分类,包含 4200+ 典型风险场景的量化指标 - 历史案例库:结构化存储 3.2 万份审计报告中的关键发现,支持相 似案例匹配检索 智能处理层部署混合推理机制,结合规则引擎与深度学习模10 积分 | 212 页 | 1.52 MB | 1 月前3
实现自主智能供应链:2035年企业竞争的新高地例行工作转变为战略性指导与统筹监督。 在自主智能供应链的转型浪潮中,未来的分 界已然清晰可见:那些积极拥抱自主智能供应链 的企业,将创造出前所未有的商业价值,并构建起 强大的运营韧性;而那些固守传统、不愿革新的企 业,则将面临日益严峻的生存挑战,甚至可能被市 场无情淘汰。面对这场席卷而来的自主化变革,是 选择引领未来,还是被动等待?这已是企业决策 者亟需厘清的议题。本篇洞察报告将提供清晰的 路线图,助力您在这场关键的重塑中把握先机。 时至今日,仅仅追求成本效益 已远远不够。供应链亟需在速度、 敏捷与可持续方面实现突破,从而 开拓新的价值高地。 得益于快速发展的AI技术2,自主化正是通往 这一目标的必由之路。我们的研究亦表明,这是企 业缔造长远价值的全新战略。它将是工业发展的 下一个阶段。从蒸汽机驱动的机械化时代到电力 时代,再到计算与数据分析的早期应用阶段,如今 实现自主智能供应链 我们已经步入技术能够支持自主系统的新时代。 供应链体系将实现人员角色转型⸺从任务执行 者转变为系统决策的指导者与监督者。我们观察 到,这一转变正通过“人机协作”的渐进式发展 在企业中逐步实现,每个阶段都推动着效益提升。 此外,通过将资深团队成员数十年积累的专 业知识和洞察进行系统化梳理与编码标准化,自 主智能供应链有助于确保核心知识的保留,并传 承至下一代员工,即便在资深团队成员陆续退休 的情况下,仍能维持知识体系的可持续性。 实现自主智能供应链 60 积分 | 28 页 | 2.74 MB | 4 月前3
基于AI大模型Agent智能体商务应用服务设计方案(141页 WROD)度。 3. 数据分析:通过大数据分析,提供商业洞察,支持战略决 策。 4. 自动化流程:通过自动化工具,减少人工干预,提高运营效 率。 在设计商务 AI 智能体时,需要充分考虑企业的具体需求和业 务场景。以下是设计过程中需要关注的几个关键点: 需求分析:明确企业需求,确定智能体的功能范围和目标。 数据准备:确保数据的质量和完整性,为智能体提供可靠的 数据支持。 技术选型: AI 智能体正在多个领域展现出广泛的 应用前景。例如,在零售行业,AI 智能体可以用于库存管理、智能 推荐和供应链优化;在金融行业,AI 智能体可以应用于风险评估、 投资建议和欺诈检测;而在制造业,AI 智能体则可以用于生产流程 优化、设备维护和质量管理。这些应用不仅能够帮助企业提高运营 效率,还能够降低运营成本,提升整体竞争力。 然而,尽管市场需求旺盛,企业在应用商务 AI 智能体时也面 交互体验,还能确保系统的安全性和可扩展性,满足商务场景中的 多样化需求。 5.2 数据分析模块 数据分析模块是商务 AI 智能体的核心组成部分之一,旨在通 过智能化的数据处理与分析技术,为企业提供精准的决策支持和业 务优化建议。该模块主要包含数据采集、数据清洗、数据存储、数 据分析和可视化展示五大功能单元。首先,数据采集单元通过多源 异构数据接口,实时获取企业内部系统(如 ERP、CRM、SCM) 以及10 积分 | 141 页 | 647.35 KB | 1 月前3
基于大模型的企业架构建模助力银行数字化转型应用方案活的数字化服务模式抢占传统银 行市场份额。 客户对数字化服务的需求日益增长,期望获得更便捷、高效、个性化的金融服务体验,推 动银行必须转型以满足市场需求。 1 2 3 大模型技术为金融业带来前 所未有的变革机遇,通过提 升数据处理能力、优化决策 流程和创新服务模式,助力 银行实现数字化转型。 大模型能够快速分析海量数据,识别潜在风险,提升 银行风险管理的精准性和效率。 辅助风险管理 通过大模型技术,银行可以更高效地评估客户信用状况, 缩短信贷审批周期,提升客户体验。 优化信贷审批 大模型为银行提供智能化的业务解决方案,支持个性 化产品设计和精准营销,增强市场竞争力。 推动业务创新 大模型技术对金融业变革的推动作用 企业架构建模在转型中的核心价值 • 企业架构建模通过将战略目标分解为具体的业务和技术路径,确保银行数字化转型战略的有 效实施。 • 帮助企业明确业务能力和技术需求,推动战略目标与业务执行的紧密结合。 结合。 实现战略落地 • 通过企业架构模型,银行能够打通业务与技术的壁垒,实现业务流程与 IT 系统的高效协同。 • 提升业务敏捷性,使银行能够快速响应市场变化和客户需求,增强竞争力。 促进业技融合 • 企业架构建模帮助银行梳理和整合各项业务能力,形成全面的能力地图,为数字化转型提供 清晰的方向和路径。 • 支持资源优化配置,提升运营效率,降低转型成本。 构建全能力地图 02 银行数字化转型现状与痛40 积分 | 56 页 | 11.28 MB | 7 月前3
AI大模型人工智能行业大模型SaaS平台设计方案.........................................................169 1. 引言 在过去几年中,人工智能(AI)技术的飞速发展及其在各行各 业的广泛应用,推动了企业对大型模型(大模型)解决方案的日益 需求。随着深度学习和自然语言处理技术的突破,许多企业意识 到,通过利用大模型,可以显著提高产品的智能化水平,提升效 率,降低人力成本。与此同时,作为一种新兴的商业模式,软件即 捷的 AI 解决方案,使其能够在竞争激烈的市场环境中立足。 从市场需求来看,以下几个因素进一步推动了大模型 SaaS 平 台的发展: 1. 企业数字化转型的迫切性:许多企业急需通过人工智能提升业 务效率,改善客户服务。 2. 开发成本的降低:利用 SaaS 平台,企业无需从头开发和维护 复杂的 AI 基础设施。 3. 自定义功能的需求提升:各行业对 AI 方案的定制化需求增 加,SaaS 升了风 险管理和投资决策能力。在医疗行业,AI 辅助诊断和个性化治疗取 得了显著成效,大幅提升了患者的就医体验。 智能风控提升信贷审批效率 医疗影像辅助诊断准确率大幅提高 制造业智能生产线降低运营成本 此外,我国的人工智能政策环境也为行业发展提供了强有力的 支持。从国家层面上,政府出台了一系列政策来促进人工智能技术 的研发和应用,涉及资金投入、人才培养和技术创新等多个方面。50 积分 | 177 页 | 391.26 KB | 7 月前3
共 30 条
- 1
- 2
- 3
