实现自主智能供应链:2035年企业竞争的新高地
2.74 MB
28 页
0 下载
24 浏览
0 评论
0 收藏
| 语言 | 格式 | 评分 |
|---|---|---|
中文(简体) | .pdf | 3 |
| 概览 | ||
2035年企业竞争的新高地 实现自主智能供应链 实现自主智能供应链 2 大中华区业务联系人 作者 埃森哲大中华区战略与咨询事业部董事总经理、 供应链与运营业务主管 jane.zheng.pan@accenture.cn 潘峥 麦克斯·布兰切特(Max Blanchet) 埃森哲资深董事总经理、全球供应链与运营战略主管 克里斯·麦迪威特(Chris McDivitt) 埃森哲供应链与运营董事总经理、自主智能供应链全球主管 斯戴芬·梅尔(Stephen Meyer) 埃森哲商业研究院供应链与运营研究高级总监 实现自主智能供应链 3 目录 挑战催生变革, 供应链亟待重塑 通向自主智能供应链 自主智能供应链的挑战 实现运营绩效的全面突破 何为自主智能供应链? 引领未来: 开创价值新高地 自主化征程: 当下现状与未来十年 前言 05 25 04 18-24 17 06-07 08-09 10-16 实现自主智能供应链 4 前言 克里斯·蒂默曼斯(Kris Timmermans) 埃森哲全球供应链与运营业务主管 传统的供应链模式如今正迅速过时。地缘政 治波动与多变的贸易环境正在重塑全球格局;与 此同时,气候压力日益加剧,消费者期待持续高 涨,传统增效策略所带来的回报却日渐式微。当 下,供应链重塑的关键在于两项关键议题。 其一,打破职能孤岛。自主决策需要在各职能 部门、流程及上下游协同关系中实现前所未有的 透明度。若缺乏端到端的可视性,即使是最先进 的AI系统也难以创造真正的价值。对于诸如自主 化AI(agentic AI)这类新兴系统而言,这一点尤为 关键,因为它们并非简单遵循固定指令,而是需要 统筹协调复杂的任务流程。 其二,简化流程。那些善于精简运营、标准化 流程的企业,将能更快地规模化应用技术,更迅 速地适应变革,并加速AI的学习周期。在当今的市 场格局中,这些无疑是一种核心的竞争优势。 我们对全球1000名企业高管的调研进一步 印证了这些关键战略举措的必要性。调研表明, 自主智能供应链正是价值创造的新高地。近三分 之二的受访企业计划在未来十年内大幅提升供应 链的自主化水平。 由此产生的财务效益十分可观。本次调研的 受访企业预计,息税及摊销前利润(EBITA)有望 增长5%,已动用资本回报率则有望提高7%。在运 营层面,企业有望将订单交付周期大幅缩短27%, 生产力提升25%,碳排放量降低16%,同时,从运 营中断事件中恢复所需的时间也能缩短约60%。 在打造自主智能供应链的进程中,领军企业 通过三项关键举措脱颖而出。首先,通过安全的数 字核心构建坚实的数据基础,并以此为依托实现 平台与治理框架的标准化。其次,对AI赋能技术进 行战略性投资,通常先从目标明确的试点项目入 手,待方案验证有效后再进行规模化推广。最后, 重塑人与技术的协作模式,推动人的角色从执行 例行工作转变为战略性指导与统筹监督。 在自主智能供应链的转型浪潮中,未来的分 界已然清晰可见:那些积极拥抱自主智能供应链 的企业,将创造出前所未有的商业价值,并构建起 强大的运营韧性;而那些固守传统、不愿革新的企 业,则将面临日益严峻的生存挑战,甚至可能被市 场无情淘汰。面对这场席卷而来的自主化变革,是 选择引领未来,还是被动等待?这已是企业决策 者亟需厘清的议题。本篇洞察报告将提供清晰的 路线图,助力您在这场关键的重塑中把握先机。 实现自主智能供应链 5 挑战 催生变革, 供应链 亟待重塑 企业正逐渐意识到,传统商业增效策略的回 报日益递减,无论是规模经济、全球化,还是精益 生产和六西格玛TM,这些都催生出了对开辟新价 值来源的迫切需求。 与此同时,线上消费交易额急剧攀升,供应链 所承受的压力也与日俱增。过去三年间,全球消费 者线上支出增长了30%1,这不仅催生了众多新兴 渠道,也带来了产品个性化定制的新需求。气候变 化、公共卫生危机以及汽车行业等特定领域的深 刻变革,均对企业的敏捷性提出了前所未有的要 求。突发且不可预测的地缘政治变局以及持续变 化的贸易环境,正迫使首席供应链官们迅速调整 其运营网络。更为复杂的是,劳动力老龄化、员工 在职年限的缩短以及技能短缺,正导致宝贵的组 织经验不断流失。 时至今日,仅仅追求成本效益 已远远不够。供应链亟需在速度、 敏捷与可持续方面实现突破,从而 开拓新的价值高地。 得益于快速发展的AI技术2,自主化正是通往 这一目标的必由之路。我们的研究亦表明,这是企 业缔造长远价值的全新战略。它将是工业发展的 下一个阶段。从蒸汽机驱动的机械化时代到电力 时代,再到计算与数据分析的早期应用阶段,如今 实现自主智能供应链 我们已经步入技术能够支持自主系统的新时代。 供应链本身具备流程驱动和数据驱动的特性,使 其成为自主化AI等技术的理想应用场景。这些技 术能够以前所未有的速度和效率协调复杂的决 策,众多供应链与技术领域的领导者对此深表 认同。 我们对1000名来自10个行业的首席级高管的 调研显示,未来十年内,近66%的企业将致力于全 面提升其供应链的自主化水平。其中更有约40%的 企业期望达到高级自主化,即由系统处理绝大多 数运营决策。 那么,这对企业员工而言意味着什么?我们 的研究表明,在自主智能供应链的生态系统中, 人力依然是核心要素。事实上,最高效的自主智� 供应链体系将实现人员角色转型⸺从任务执行 者转变为系统决策的指导者与监督者。我们观察 到,这一转变正通过“人机协作”的渐进式发展 在企业中逐步实现,每个阶段都推动着效益提升。 此外,通过将资深团队成员数十年积累的专 业知识和洞察进行系统化梳理与编码标准化,自 主智能供应链有助于确保核心知识的保留,并传 承至下一代员工,即便在资深团队成员陆续退休 的情况下,仍能维持知识体系的可持续性。 实现自主智能供应链 6 我们的调研发现,通过人工监督关键流程节点 (即“人机协同”)来实现自主运营,能够显著提升 效率、敏捷性和可持续性,这对于适应动态环境中 的突发变化至关重要。 这种方法既能充分发挥AI驱动系统的强大 能力,又能保留人工监督,以进行战略决策与必要 干预。 例如,企业可以首先从财务成果入手,进而提 升运营速度、敏捷性,并优化成本。我们的受访者 预计,此举可将息税及摊销前利润提升5%、已动 用资本回报率提升7%。除财务指标外,他们还预 期在运营效率和生产力上取得显著收益。他们相 信,自主化系统不仅能够将订单交付周期缩短27%、 劳动生产率提高25%,从而使企业能够更快地响 应客户需求,同时还可以将按时交付率提升5%。 实现运营绩效的 全面突破 在不可预测的环境中增强运营可靠性,这对于那 些将快速履约视为核心竞争优势的行业而言,更 是重大利好。 可持续性的提升是另一项重要 成果。近四成(39%)受访企业表示, 得益于更优的再利用、再循环和资 源效率,自主化运营将显著推动供 应链的循环性。 实现自主智能供应链 7 1. 构建坚实且安全的数据基础 2. 投资关键AI技术,加速规模化 战略布局 3. 重构人与技术的协作模式 图1 企业应对中断的反应时间与恢复时间 敏捷性 4天 11天 从中断或变更中 恢复的时间: - 60% 应对中断的 反应时间: - 62% 1至5个月(视具体问题而定) 此外,企业预计通过自主化运营能缩减约16% 的碳排放,这将直接帮助企业达成其可持续发展 目标。 再者,自主化运营能够增强企业韧性,以更好 地应对网络攻击、人才短缺、地缘政治动荡、极端 天气事件以及原材料稀缺等风险。我们发现,企业 预计应对中断的反应时间和恢复时间将分别缩短 62%和60%(见图1)。这种强大的韧性在供应链 中断愈发频繁和严重的当下尤为重要。 自主化系统仍处于发展的初期阶段,大多数 企业也刚刚踏上这一征程。我们深入研究了领军 企业为获取初步成功所采取的有效行动,并总结 出以下几项关键举措。 这些策略并非必须按顺序执行,但对于那 些在迈向自主智能化系统的过程中践行了其 中一项或多项的企业而言,初步成效已经显 现。我们将在后面的章节中详细阐述每一项 举措。 实现自主智能供应链 8 何为自主 智�供应链? 供应链的完全自主化不单单指孤岛式的自 动化。传统的自动化系统遵循预设指令,且需要 人工监督。以普通汽车的定速巡航控制功能为 例,它能自动保持设定速度,但仍需人工干预转 向和刹车。 相较之下,自主化系统虽包含一定程度的自 动化,但其内涵远不止于此。它们由自主化AI驱 动,可在无需人工干预的情况下自主决策并执 行任务。例如,已在部分城市投入使用的全自动 驾驶汽车,具备自主驾驶能力,并能完全掌控车 辆,几乎不需要驾驶员介入。 8 实现自主智能供应链 实现自主智能供应链 9 The journey towards autonomy implies a true transformation along 4 maturity steps 25% 50% 75% 完全自主化 增强型决策 自动化 人工驱动 Autonomy index Maturity scale definitions 自主化指数:0~25% 自主化指数:25%~50% 自主化指数:50%~75% 自主化指数:> 75% 作业流程主要依赖人力。 作业流程主要通过人工执行 (使用需要人工干预的大型 传统IT系统,或手动操作的 机器)。 • • 作业流程日趋自动化,将人力 从繁琐任务中解放出来。 但是,各项决策和指令均由 人工做出。 • • 作业流程通过智能决策辅 助系统得到增强,该系统能 提供操作建议与洞察以优化 决策。 作业流程可部分实现自动化。 • • 自主化运营流程/自我优化。 AI助手支持人工进行行动规划 与生成。 • • 图2 自主化征程:一场贯穿四大成熟度阶段的真正转型 成熟度 等级定义 自主化指数 实现自主智能供应链 真正意义上的自主智能供应链包含两大维 度(见图2):任务自动化与决策自主化。在任务 自动化层面,机器将取代人工执行具体任务。例 如,订单处理自动化可以让机器完成验证订单、 检查库存、创建货运标签以及处理异常情况等 工作,从而将人力解放出来,专注于更具战略性 的事务。在决策自主化层面,机器则会取代人工 进行决策制定。正如供应链经理会响应突发事 件,指导团队成员完成特定任务一样,机器也 能够规划、执行、纠正并改进各项活动,以达成 既定的绩效标准。 即便自主智能供应链具备任务自动化与决 策自主化能力,但至少在目前阶段,仍离不开人 的参与。人与技术各有所长,协同合作方能取 长补短。在双方能力领域的交汇处,便形成了 “人机协作”的劳动力形态,现场及远程员工与 自主智能体、智能机器人实现无缝集成。3 在 最高效的自主化系统中,人类的角色并不仅仅 是作为“执行环”(in the loop)来完成任务,他 们更应处于“监督环”(on the loop),在诸如设 计、测试与验证等流程的关键节点上发挥监督与 把控作用。换言之,自主化系统负责感知与响应, 而人类则通过提供反馈和优化输出来实现持续 改进,从而提升整个组织的集体智慧。 实现自主智能供应链 10 自主化征程: 当下现状与未来十年 我们的调研显示,大多数企业才刚刚开始探 索和部署自主化能力。尽管约25%的受访企业已 开启自主化征程,但在从0(完全人工)到100% (完全自主)的指数体系中,供应链各项活动的自 主化成熟度中位数仅为16%(平均成熟度则为21%)。 预计在未来五到十年内,该成熟度中位数将大幅 提升至42%。 为了更深入地理解如何向更高自主化水平迈 进,我们将典型的供应链流程划分为9个集群和 29项具体活动(见图3)。例如,“生产制造”集 群便涵盖了生产加工、产品组装以及包装等活动。 随后,我们将受访企业各项活动的当前状态及预 期的未来状态,映射到了既定的自主化发展阶段 (见图4)。 调研明确显示,没有任何一项供应链活 动能够在这场变革中置身事外。AI将在不同程 度上赋能所有这些活动(见图5)。目前,大多 数能力仍处于较低的自动化和决策自主化水平, 但在诸如“生产制造”“质量与生产控制”以 及“客户与现场支持”等集群中存在特例。在 这些领域,自动化已展现出强劲势头。例如,汽 车制造商依赖机器人装配线,利用AI驱动的精 准控制来提高生产速度并减少错误。 回顾国内供应链近十年的发展历程,大部 分龙头企业通过ERP的实施落地,在当时已具 备线上化、自动化能力,从而推动企业向数字 化供应链的探索。高科技电子行业及快消零售 行业的数字化变革已经初具成效,AI算法嵌入 流程辅助决策;伴随DeepSeek等生成式AI技 术的普惠,数字化的领头羊们已开始加速规划 自主化能力与落地探索。 10 实现自主智能供应链 11 End to end supply chain activities have been segmented into 28 activities grouped in 9 clusters of similar nature of task 按相似特征划分的 活动集群 20. 21. 生产控制 质量控制 设计、研发与战略采购 1. 创意构思/创新 2. 新产品/新服务的设计、测试与验证 3. 采购寻源、供应商选择及合同磋商 4. 供应商发展与关系管理 计划与排程 5. 供需集成计划 6. 生产排程/物料需求计划(MRP) 7. 运输计划 8. 维修与备件计划 运输 9. 10. 11. 12. 13. 仓库拣选与处理 原材料与零部件补给 运输准备(包装与装载) 运输(货运) 产品搬运 生产制造 14. 15. 16. 生产/制造 产品组装 产品包装 设置、维修与切换 质量与生产控制 运营采购 预警、风险、改进 17. 18. 19. 产业化(初始设备设置、规模扩大) 切换(包括清洁) 维修 22. 23. 供应商合同签订 采购到付款 24. 25. 26. 异常或风险检测及预警 评估与根因分析 内部及与供应商共同执行改进计划 27. 28. 29. 客户支持 现场服务 订单到回款 客户与现场支持 图3 端到端供应链活动被划分为29项具体活动,并根据任务相似性归入9个集群 实现自主智能供应链 12 图4 大多数活动集群将在智能系统的驱动下经历重大转型, 部分集群未来将迈向高度自主化 自主化成熟度 [全球专家组观点] 预警、风险、改进 5 运营采购 8 设置、维修与切换 9 25 50 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 未来状态描述 主要由 人工驱动 主要为 自动化 增强型 人工决策 自主化 质量与生产控制 1 生产制造 2 客户与现场支持 3 6 运输 7 计划与排程 设计、研发与战略采购 4 基于AI解决方案的自动化质量控制,根据预警自动调整生产控制。 • 混合型客户支持模式,结合AI驱动的自主问题解决与科技增强的现场支持,基于经验教训 和客户具体情况提供定制化建议。 • 广泛运用生成式设计、自动化和基于仿真的测试来增强产品开发,并通过算法优化实现快速的 机器设置。 • 完全自动化的生产流程,通过制造业数字孪生来引导流程,实现无人工干预的切换。 • • 利用预测、财务标准、产能和运营多约束优化计划与排程,并提供可借鉴的实用建议。 增强型人工决策,实现跨域跨组织的无缝计划变更。 • 超过95%的交易实现自动化流程及问题解决。 • 利用分析工具监督流程以提高流程效率。 • 利用事件和预测算法实现自动化维修计划,并通过人机增强支持高效的任务执行、备件订购和 行动建议。 • 通过问题解决方案、风险分析和基于经验教训得出的行动建议,使人工驱动活动得以增强。 • 高度自动化的仓库运营,采用先进的自动导引车(AGV)进行拣选、存储、包装和装载。中央控制中心 管理流程、检测问题并提供行动建议。 • 14 28 19 38 19 38 19 36 20 40 22 45 24 48 24 45 当前 未来五年内 实现自主智能供应链 13 图5 大多数供应链活动将通过AI赋能与自动化的强力结合,逐步迈向完全自主化 完全 决策自主化 监督下的 决策自主化 增强型人工活动 产业化、切换与维修 质量与生产控制 客户与现场支持 设计、研发与寻源 人工驱动活动 完全自主化活动 受控的 决策自主化 无自主化 有限自动化 部分自动化 高度自动化 完全自动化 自动化活动 客户与现场支持 计划与排程 产业化、切换与维修 运输 设计、研发与寻源 警报、风险规避、纠正 采购流程与交易 计划与排程 质量与生产控制 生产制造 生产制造 运输 采购流程与交易 预警、风险规避、纠正 人工密集度 当前 未来五年内 实现自主智能供应链 14 展望未来,诸如“运输”“设置”“维修与切 换”以及“计划与排程”等集群,将在智能系统 的赋能下,展现出更强的决策自主化能力。零售 商与物流服务提供商已开始部署自主仓库机器 人和智能调度系统,旨在更高效地管理库存流转, 并缩短订单履约时间。 最终,“生产制造”集群有望达到最高水平 的自主化成熟度,这得益于诸如“黑灯工厂”等 最新创新成果⸺这类工厂运用机器人技术与 先进的增材制造技术,快速生产定制化产品。紧 随其后的将是“质量与生产控制”和“客户与现 场支持”等集群,在这些领域,物流企业正部署 自主无人机和数字助理,以加快响应速度并提 升服务质量。 总的来说,大多数受访企业计划在其供 应链中稳步实施转型,伴随新技术的涌现与 成熟,逐步实现更高水平的任务自动化与决 策自主化。 实现自主智能供应链 15 图6 最先进的工业多集中在离散制造领域 • 未来五年内,所有行业的供应链自主化 水平预计都将实现显著提升。大多数行 业从当前到未来的自主化发展均呈现持 续增长态势,反映出向自动化与自主化 转型的普遍趋势。然而,各行业转型的 速度与广度差异显著,这为根据其独特 需求和运营现状制定针对性的战略举 措带来了机遇。 • 汽车行业已成为数字化供应链转型的 标杆,正迅速从当前主要由人工驱动的 运营模式转向增强型人工决策模式,这 对整个行业具有深远的启示意义。 • 流程导向型行业(如石油天然气、化工) 目前相对滞后。然而,其未来可观的成 熟度增长(如油气行业,预计增长超过 21%)预示着这些行业的应用势头日益 增强,有望缩小与离散制造业的差距。 • 尽管取得了显著进展,但尚无行业预计 能在未来五年内实现完全自主化,这 反映了业界对技术成熟度、运营复杂性、 监管环境以及人工监督必
| ||
下载文档到本地,方便使用
- 可预览页数已用完,剩余
26 页请下载阅读 -
文档评分


智能工厂如何通过预测与控制实现降本增效