2025年大模型一体机服务商研究报告-亿欧智库报 告 ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ◆ ◆ ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125) ©亿欧智库-陈皓 (79125)20 积分 | 16 页 | 3.57 MB | 4 月前3
AI知识库数据处理及AI大模型训练设计方案(204页 WORD)项目编号: AI 知识库数据处理及 AI 大模型训练 设 计 方 案 目 录 1. 项目概述.......................................................................................................7 1.1 项目背景............................. 13 1.4 项目团队及职责分工...........................................................................14 2. 知识库数据处理方案..................................................................................15 2.1 数据来源及采集 数据存储与管理..................................................................................42 2.4.1 数据库选择.................................................................................43 2.4.2 数据备份策略.60 积分 | 220 页 | 760.93 KB | 4 月前3
大模型技术深度赋能保险行业白皮书151页(2024)向实际应用,从概念验证进入规模化部 署的关键阶段。因此,本年度《大模型技术深度赋能保险行业白皮书》的编写,不仅是对过 去一年技术发展的总结与回顾,更是对未来应用前景的展望与规划,旨在为保险行业的智 能化转型提供技术参考和实践建议。 白皮书基于阳光保险的大模型落地实践经验,深入剖析了大模型技术在保险行业的落 地应用路线。我们详细阐述了数据准备、模型精调、工程化适配、模型评测等关键环节的技 · · · · · · · · · · · · 27 2.1.1 保险业面临前所未有的挑战· · · · · · · · · · · · · · · · · · · · · 27 2.1.2 数智化转型是解决之道及不二选择· · · · · · · · · · · · · · · · 28 2.2 国内外相关政策分析· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 34 2.3 保险业数智化转型进展· · · · · · · · · · · · · · · · · · · · · · · · · · · 35 2.3.1 保险业数智化转型是一个全方位多层级的渐进过程· · · · 36 2.3.2 保险业数智化转型进展· · · · · · · · · · · · · · · · · · · ·20 积分 | 151 页 | 15.03 MB | 1 天前3
算力与场景双驱动,智能软件研发进入“平台 服务”融合新阶段 头豹词条报告系列信创软件 饶 3 信创软件,即信息技术应用创新软件,是指在自主可控、安全可靠的原则下开发的软件产品和服务,旨在减少对国外技术的依赖并提升国 家信息系统的安全性。这类软件涵盖了操作系统、数据库、办公套件、中间件等基础软件领域,以及行业应用软件,强调采用国产处理 器、服务器、网络设备等硬件平台,并结合国内自主研发的技术标准和协议。 智能软件研发的行业特征包括技术依赖性强、产品迭代周期短、多样化与跨领域应用。 。 智能软件研发行业可以分为四个阶段,萌芽期(1960-1969年),软硬件分离定价与软件工程概念的提出,为智能软件研发的独立发展和技 术创新奠定了基础;启动期(1970-2000年),独立数据库公司的崛起为智能软件研发行业在启动期奠定了数据处理与管理的基础;高速发展期 (2001-2021年),智能软件研发行业在高速发展期开始注重灵活、高效和响应变化的开发方法;成熟期(2022年至今),智能软件研发行业在 市。尤为值得关注的是, 百强企业主要植根于京津冀、长三角、珠三角这三大经济高地,其占比分别为40%、31%、20%。 生产制造端 硬件与基础软件 上游厂商 七十年代初,独立数据库公司的崛起推动全球数据库市场快速崛起。 1981年,IBM推出了面向大众市场的IBM PC及其配套软件,该 里程碑事件标志着全新软件时代的开启。 IBM推出IBM PC及其配套软件,标志着智能软件研发行业进入10 积分 | 18 页 | 5.48 MB | 3 月前3
审计领域接入DeepSeek AI大模型构建Agent智能体提效设计方案(204页 WORD)度:首先是领域知识的深度适配,包括国际财务报告准则 (IFRS)、美国通用会计准则(GAAP)等超过 2000 项条款的准 确解析;其次是多模态数据处理能力,既能解析 PDF 财报和扫描 凭证,又能处理 Excel 底稿和数据库日志;最后是可追溯的推理链 条,每个审计结论都必须具备可验证的逻辑路径。以下为审计智能 体与传统工具的对比差异: 能力维度 传统审计软件 DeepSeek 智能体方案 准则更新响应速度 季度级人工更新 某试点项目数据显示,该方案使应收账款函证程序的耗时缩短 57%,同时将异常交易检出率提升 31%。这种提升不仅来自算法优 势,更源于对审计工作流的深度重构—— 例如将函证地址验证与工 商登记数据库实时对接,自动标记异常注册地。 值得注意的是,审计智能体的部署必须遵循严格的质控标准。 我们设计了双重校验机制:所有 AI 生成的分析结论都需通过独立 ” 规则引擎验证,关键审计判断则保留人工复核接口。这种 难以处理的文件,实测显示对模糊文档的字段提取准确率 达到 92%,较传统技术提升 40%;其次,风险预测模块通过分析 历史审计案例库,可自动生成高风险科目预警清单,在试点项目中 成功识别出 87%的关联方交易异常;最后,其持续学习机制允许接 入会计师事务所的私有知识库,例如某四大事务所通过微调模型使 其掌握了该所特有的工作底稿编码规则。 审计场景关键能力对照表 | 功能模块 |10 积分 | 212 页 | 1.52 MB | 1 天前3
信息服务-AI Agent(智能体):从技术概念到场景落地制造、能源、医疗、零售等行业的智能化应用向多模态和跨模态转变。 投资建议:我们认为未来智能体(AI Agent)的前景十分广阔,随着大模型的发展, 智能体将从概念走向实际应用,成为各行业的重要助力。通过多模态大模型,智 能体能够整合图片、语音等异构数据,提高任务处理效率,并解决跨行业、跨领 域的问题。技术方面,智能体具备长期和短期记忆、自主规划、工具使用和自动 执行任务的能力。这些能力不仅能提高工作效率,还能为用户提供更好的体验。 自主拆分任务、使用工具、完成工作,用户仅负责设立目标、提供工具资源和监督结 果。OpenAI 定义的智能体具有长期和短期记忆、自主规划、工具使用和自动执行任务 的能力,能提高工作效率和用户体验。另外,智能体也分为单智能体和多智能体。单智 能体通过试错学习在单一环境中行动,追求最大奖励,多用于简易任务。多智能体在博 弈环境中行动,追求长期累积奖励,多用于复杂测试。 1.1Agent 模式架构解析 Agent 有效减少人类工作总量,人与 目前的应用大多都在概念层面,但随着大模型竞争加快、政策鼓励研发投 入、更多企业参与 AI 研究等因素,应用层面的 AI Agent 推进速度加快。智能体大致可 以分为六类,根据他们被设计出的特点,可以作用在不同的应用领域上。不同类别的智 能体给予应用层面上更多研发方向,像目前关注度较高的自动驾驶技术、智能电网控制、 能源管理等都能被垂类智能体覆盖。结合多模态大模型,自动化和情感需求类智能体已 落地。但商业化智能体仍需考虑成本问题,由于智能体之间的交互过程可能出现错误循10 积分 | 33 页 | 4.71 MB | 1 天前3
CAICT算力:2025综合算力指数报告我国在用标准机架数量分布............................................................................ 17 图 7 我国在用智算规模(FP16)分布....................................................................18 图 8 省级行政区算力分指数-算力质效 制生产设备的工 业机器人,到智能交通里实时规划路线的导航系统,再到个性化推 荐服务背后复杂的算法运算,各类数字化场景都高度依赖强大、稳 定且高效的算力支撑。特别是在智能化进程加速推进的背景下,智 算需求更呈现出一种持续攀升的强劲态势。据国际数据公司(IDC) 预测,2024 年全球人工智能服务器市场规模为 1251 亿美元,2025 年预计将增至 1587 亿美元,2028 年有望达到 70%的组织开始对生成式人工智能技术进行投资或处 于初步测试阶段,已经有 17%的组织将生成式人工智能应用和服务 引入生产环节,保障国家的科技话语权与产业安全。美国、日本等 发达国家和地区也持续加大在智算、超算等算力相关领域的投入, 力求巩固其领先地位。美国“网络与信息技术研发计划”(NITRD)人工 智能研发投资预算增长至 31 亿美元,占整体年预算的近三分之一, 相比于上一年提高 19.2%;202520 积分 | 54 页 | 4.38 MB | 1 天前3
实现自主智能供应链:2035年企业竞争的新高地%的 企业期望达到高级自主化,即由系统处理绝大多 数运营决策。 那么,这对企业员工而言意味着什么?我们 的研究表明,在自主智能供应链的生态系统中, 人力依然是核心要素。事实上,最高效的自主智� 供应链体系将实现人员角色转型⸺从任务执行 者转变为系统决策的指导者与监督者。我们观察 到,这一转变正通过“人机协作”的渐进式发展 在企业中逐步实现,每个阶段都推动着效益提升。 此外,通过将资深团队成员数十年积累的专 这些策略并非必须按顺序执行,但对于那 些在迈向自主智能化系统的过程中践行了其 中一项或多项的企业而言,初步成效已经显 现。我们将在后面的章节中详细阐述每一项 举措。 实现自主智能供应链 8 何为自主 智�供应链? 供应链的完全自主化不单单指孤岛式的自 动化。传统的自动化系统遵循预设指令,且需要 人工监督。以普通汽车的定速巡航控制功能为 例,它能自动保持设定速度,但仍需人工干预转 向和刹车。 增强,有望缩小与离散制造业的差距。 • 尽管取得了显著进展,但尚无行业预计 能在未来五年内实现完全自主化,这 反映了业界对技术成熟度、运营复杂性、 监管环境以及人工监督必要性的现实 考量。 来源:埃森哲2024年自主智�供应链全球调研。样本基数:所有企业(样本量=1000)。 第25百分位数 当前中位数 第75百分位数 未来五年内 主要亮点 各行业当前及未来自主化水平概览 化工 5 零售 8 生命科学0 积分 | 28 页 | 2.74 MB | 3 月前3
2025年以计算加速迈进智能化未来-IDC新一代云基础设施实践报告以计算加速迈进智能化未来 ⸺IDC新一代云基础设施实践报告 趋势:云服务能力持续跃升,加速企业数智化转型与创新 01 目录 1.1 技术全面升级,为复杂的企业在线业务提供保障 1.2 软硬一体协同优化,应对AI时代激增的数据冲击 1.3 持续的融合创新,助力企业的国际化布局 挑战:企业多元业务需求与海量AI数据的冲击 02 2.1 在线业务面临性能与效率的极限挑战 �.� AI数据处理与计算协同的复杂度激增 载、安全等事务。企业云计算客户不仅对算力密度有极致追求,还期望通过连接性能和存储技术 等多个方面的协同进步,实现数据库、大数据等服务平台的性能跃升。在IDC面向全球1350家企 业所做的数字化进程与业务成果调研中,应用的可用性、综合安全性、应用的性能等都成为企业 核心关注的目标。 趋势:云服务能力持续跃升 加速企业数智化转型与创新 01 IDC预计,云数据中心数据增长在2025年为58.1ZB,����年将翻4倍,达到228 对算力密度的极致追求:企业希望利用有限的物理空间输出更强大的算力。这一方面体现在 一些高端的云服务实例可以提供数百、数千甚至数万数量级的CPU、GPU核服务能力;另一 方面,为满足大数据、数据库、3D视频处理在内的一些单核敏感型业务的需要,云服务仍将 持续提升单核、单实例性能。 多技术融合提升连接性能:云服务商综合利用内存/缓存、PCle、RDMA、IP网、EIP、VPC 等一系列技术10 积分 | 27 页 | 5.31 MB | 3 月前3
抢滩接入Deepseek,教育行业迈入AI深度整合新阶段学而思围绕DeekSeek的AI教育布局情况 三、网易有道:融合底层技术构建混合架构,升级全线 产品、创新AI原生学习硬件 2月6日,网易有道宣布旗下有道小P、Hi Echo、有道词典、QAnything、有道智 云等产品全面接入DeepSeek推理能力进行升级,深化AI技术与教育场景的结合; 后于2月18日推出AI原生学习硬件产品答疑笔SpaceOne。网易有道通过将全产品 线接入DeepSeek、加速智能 ,网易有道基于子曰教育大模 型自研的RAG引擎“QAnything”、AI开放平台有道智云也全面接入DeepSeek的 推理能力进行升级。 3、AI教育硬件创新:推出AI原生学习硬件“SpaceOne”,作为全面屏答疑词典笔 具备DeepSeek-R1推理模型能力,且内置网易有道AI家教软件及教育资源、知识 库,创新学科难题深度讲解方式。 网易有道围绕DeekSeek的AI教育布局情况 网易 网易有道对DeepSeek的抢滩布局快速且全面,覆盖软件(翻译、口语、伴学 APP)、硬件(词典笔)、AI平台(有道智云)全场景,形成“入口级硬件+高频 软件+底层模型”的AI教育生态。预计随着DeepSeek融合深化,网易有道将加速 升级“有道小P 2.0”、持续推出具备全新推理大模型能力的智能硬件产品。 四、以DeepSeek为代表的高性能低成本通用模型将加速 推动AI教育产品、场景创新 D10 积分 | 6 页 | 1.23 MB | 1 天前3
共 37 条
- 1
- 2
- 3
- 4
