华为:2025大模型背景下高等教育数智化转型研究报告
7.86 MB
132 页
0 下载
3 浏览
0 评论
0 收藏
| 语言 | 格式 | 评分 |
|---|---|---|
中文(简体) | .pdf | 3 |
| 概览 | ||
大 模 型 背 景 下 高等教育数智化转型研究报告 智 慧 之 钥 解 锁 未 来 潜 能 编委会 主编 孙鹏飞 吴永和 范小骞 副主编 肖玉敏 吴战杰 陈 浩 党张波 赵 爽 编委会委员 曹 鹏 陈慧娟 黄和平 谭 方 编者(按姓氏音序) 陈 明 陈圆圆 侯 磊 刘万飞 刘桢桢 明守刚 吴慧娜 吴 优 许秋璇 颜 欢 张文轩 郑 浩 摘 要 自 2022 年 ChatGPT 3.5 发布以来,以大模型为代表的人工智能技术突飞猛进,对教育变革带来巨大影响。教 育领域的数字化转型正在深度融合人工智能技术,加速迈向数智化转型。 本报告系统梳理国际与国内政策进展,深入分析国际社会高度重视人工智能教育应用的政策动向,以及国内以 人工智能为基础推动教育创新发展的政策布局。通过政策梳理与分析,提炼出“人才培养、科学研究、社会服 务与国际合作”四大导向,明确高等教育数智化转型的发展方向和战略目标。 报告从技术、社会与教育三个维度深入审视机遇与挑战:在技术层面,算力、数据与算法的突破孕育创新红利, 但面临安全、伦理、偏差与治理等现实约束;在社会层面,发展契机与潜在风险并存;在教育层面,知识去中 心化、学习个性化的进程中,需要同步重塑价值导向与能力结构。基于深入分析,报告提出推动高等教育走向 智能、高效、开放、可持续发展的总体目标,涵盖升级智慧教育环境建设、创新人才培养模式、促进跨学科和 人机协同科研、提升社会服务能力、加强国际交流合作、助力文化传承传播、建构数据驱动的教育治理体系等 七个重要方面。报告的核心关切聚焦于如何在拥抱人工智能技术创新的同时,建立有效的治理机制,并确保高 等教育的人文价值和社会责任得到维护。 围绕教育大模型的能力与要素,报告构建了完整的分析框架。在能力维度上,提出“通用能力+教育能力”的 能力谱系;在要素分析上,形成“五要素”框架:算力作为构建基石与场景适配关键,数据作为必备燃料与领 域属性特征,算法作为核心引擎与风险应对策略,开发工具作为全栈式工具矩阵,安全、伦理和隐私保护作为 有效保障。在技术路线上,构建“参考架构—智能体应用—标准体系”的完整技术路径,以“性能—成本—应用” 协同优化为抓手,支撑模型从训练、推理、部署、协同到应用增强的全链路落地。 面向教育新范式,报告深入分析教育大模型赋能高等教育创新发展的具体路径,总结了九个重构方向:提供精 准适需的教育内容、实现个性灵活的教学方式、支持沉浸互动的学习体验、重塑教育主体的角色与能力、助力 数据驱动的教育评价、推动智能高效的教育治理、构建安全可信的伦理治理体系、配置优质均衡的教育资源、 强化智能协同的科研创新。据此提出“统筹规划、分步建设、优选场景、协同发展”的教育大模型建设原则, 阐明基于通用大模型研发教育大模型的具体实践,倡导通过算力、数据、算法协同优化的工程创新来实现教育 大模型的高算效和高能效。 应用层面,报告系统归纳教学、管理、科研与社会服务等主要应用场景,汇聚典型案例包括 DeepSeek 助力数 字化实训、大模型赋能智慧教室、人工智能数智化学习新模式、师范生实践教学能力提升、在线个性化学习、 全栈人工智能科研创新等,验证了智能导学、人工智能助教、智慧教室、数字化实训与科研助手等应用的实践 成效,充分展现了教育大模型在提升教学质量、优化学习体验、促进科研创新等方面的显著价值。 治理层面,报告从四个维度提出系统性对策:法制建设与标准化工作方面,完善法律法规保障教育应用的规范 性,落实标准体系建设;数据安全与伦理隐私方面,实施安全监测与防范,开展伦理治理与监督,强化隐私保 护与管控;模型演进与技术支撑方面,注重算法优化与迭代,数据规范与优化,算力支持与扩展;内容高质量 与教育包容性方面,强调内容管理与优化监管,采取包容策略促进教育发展的普惠性。构建“政府—高校—企业— 社会组织”多主体协同的治理框架,强调可解释性、公平性、可靠性与绿色低碳。 面向未来,报告从五个方面提出发展愿景:构建智算生态体系赋能智慧教育环境,重塑高教专业体系优化人才 培养机制,变革知识生产范式重塑科研新样态,推动教育公平承担社会责任,着眼共同发展为世界高等教育提 供中国方案。同时,报告正视大模型应用中的算法偏差与“黑箱”问题、内容同质化风险、知识产权与数据权 益等挑战,强调强化教师与管理者人工智能素养,保护学生主体性与创造力,完善数据确权与合规流通机制, 推进绿色计算与可持续运营。 总体而言,本报告以“以人为本、立德树人”为根本遵循,主张以标准化与场景化并重、能力建设与制度供给 并行的策略,持续提升高等教育的质量、效率与公平,协同共创智能、高效、开放、可持续的高等教育新格局, 实现人机协同共创高等教育美好的未来。通过深入分析大模型技术对高等教育的深远影响,提出切实可行的发 展路径和治理对策,为推动我国高等教育数智化转型提供了重要的理论指导和实践参考。 关键词 教育大模型,高等教育数智化转型,人机协同,教育场景,个性化学习,智能教育治理,数据安全,伦理隐私, 技术标准,参考架构 目录 第一章 赋能高等教育数智化转型的政策概览 ···················· 1 1.1 政策概述:世界各地人工智能赋能教育的政策 ····································· 2 1.1.1 国际政策:高度重视人工智能的影响,发布政策推动应用 ································ 2 1.1.2 国内政策:以人工智能为基础,推动教育创新发展 ···································· 12 1.2 政策导向:明晰智能时代高等教育数智化转型的战略方向 ··························· 20 1.2.1 人才培养导向:优化教育教学方式,培养高素质人工智能人才 ··························· 20 1.2.2 科学研究导向:加强基础与应用研究,推动人工智能技术健康发展与深化应用 ·············· 21 1.2.3 社会服务导向:履行社会责任,利用人工智能推动社会全面进步 ························· 23 1.2.4 国际交流合作导向:加强国际合作,共同应对人工智能的挑战与机遇 ······················ 23 1.3 智能时代高等教育的发展战略 ················································ 25 第二章 大模型背景下高等教育体系的重塑 ···················· 27 2.1 大模型赋能高等教育的机遇与挑战 ············································ 29 2.1.1 技术层面:算力、数据、算法的突破机遇与三重隐忧并存 ······························· 29 2.1.2 社会层面:发展契机与潜在风险并存 ··············································· 30 2.1.3 教育层面:知识平权化机遇与价值重塑挑战并存 ······································ 33 2.2 推动高等教育走向智能、高效、开放、可持续发展 ································ 35 2.2.1 升级智慧教育环境建设 ·························································· 35 2.2.2 创新人才培养模式 ····························································· 36 2.2.3 促进跨学科和人机协同的科研 ···················································· 37 2.2.4 提升社会服务能力和水平 ························································ 38 2.2.5 加强国际交流合作 ····························································· 38 2.2.6 助力文化传承与传播 ··························································· 39 2.2.7 建构数据驱动的教育治理体系 ···················································· 40 第三章 大模型赋能高等教育数智化转型 ······················ 41 3.1 教育大模型能力维度分析 ··················································· 43 3.1.1 大模型通用能力分析 ··························································· 43 3.1.2 教育大模型的教育能力分析 ······················································ 44 3.2 教育大模型核心要素分析 ··················································· 45 3.2.1 算力:教育大模型的构建基石与场景适配关键 ········································ 46 3.2.2 数据:教育大模型的必备燃料与领域属性特征 ········································ 47 3.2.3 算法:教育大模型的核心引擎与风险应对策略 ········································ 48 3.2.4 开发工具:教育大模型全栈开发工具矩阵 ··········································· 49 3.2.5 安全、伦理和隐私保护:教育大模型建设和应用的有效保障 ····························· 50 3.3 教育大模型赋能高等教育创新发展 ············································ 51 3.3.1 提供精准适需的教育内容 ························································ 52 3.3.2 实现个性灵活的教学方式 ························································ 52 3.3.3 支持沉浸互动的学习体验 ························································ 53 3.3.4 重塑教育主体的角色与能力 ······················································ 54 3.3.5 助力数据驱动的教育评价 ························································ 55 3.3.6 推动智能高效的教育治理 ························································ 55 3.3.7 构建安全可信、普惠包容的伦理治理体系 ··········································· 56 3.3.8 配置优质均衡的教育资源 ························································ 57 3.3.9 强化智能协同的科研创新 ························································ 58 第四章 教育大模型技术架构与标准体系 ······················ 60 4.1 教育大模型的参考架构 ····················································· 61 4.1.1 教育大模型总体参考框架 ························································ 61 4.1.2 教育大模型智能体应用 ·························································· 63 4.2 教育大模型的核心技术 ····················································· 64 4.2.1 从训练推理、部署、协同到应用增强的核心技术解析 ·································· 65 4.2.2 以 DeepSeek 代表的“性能-成本-应用”技术协同创新突破 ··························· 66 4.3 教育大模型的标准体系 ····················································· 67 4.3.1 教育大模型的标准架构 ·························································· 68 4.3.2 教育大模型设计和开发的原则 ···················································· 69 4.4 教育大模型的实施路径 ····················································· 71 4.4.1 以算力、数据、算法的协同优化实现高算效和高能效 ·································· 71 4.4.2 以统筹规划、分步建设、优选场景和协同发展增强现实性 ······························· 73 4.4.3 以通用大模型为基础开展教育大模型研发 ··········································· 73 第五章 教育大模型应用探索与实践 ·························· 76 5.1 教育大模型应用主要场景分析 ················································ 77 5.2 教育大模型应用典型案例分享 ················································ 81 5.2.1 案例一:DeepSeek 助力数字化实训赋能数智人才培养 ································· 81 5.2.2 案例二:大模型赋能智慧教室助力教学模式创新发展 ·································· 82 5.2.3 案例三:DeepSeek 构建人工智能数智化学习新模式 ·································· 83 5.2.4 案例四:大模型赋能师范生实践教学能力提升 ········································ 84 5.2.5 案例五:大模型全链路支持在线个性化学习 ········································· 85 5.2.6 案例六:全栈人工智能解决方案赋能高校科研创新 ···································· 86 第六章 教育大模型治理 ·································· 88 6.1 法制建设与标准化工作 ····················································· 89 6.1.1 完善法律法规,保障教育应用的规范性 ············································· 90 6.1.2 落实标准体系建设,促进教育大模型的可持续发展 ···································· 91 6.2 数据安全与伦理隐私 ······················································· 92 6.2.1 实施安全监测与防范,确保教育数据的安全性 ········································ 92 6.2.2 开展伦理治理与监督,保障数据使用的道德性 ········································ 93 6.2.3 强化隐私保护与管控,维护教育数据的合规性 ········································ 94 6.3 模型演进与技术支撑 ······················································· 95 6.3.1 算法优化与迭代,确保教育应用的可靠性 ··········································· 95 6.3.2 数据规范与优化,提升教育模型的准确性 ··········································· 96 6.3.3 算力支持与扩展,提升教育服务的可及性 ··········································· 97 6.4 内容高质量与教育包容性 ··················································· 98 6.4.1 注重内容管理与优化监管,保障生成内容科学性 ······································ 98 6.4.2 采取包容策略与方法,促进教育发展的普惠性 ········································ 99 第七章 大模型背景下的高等教育未来展望 ····················101 7.1 构建智算生态体系:赋能智慧教育环境 ········································ 102 7.2 重塑高教专业体系:优化人才培养机制 ········································ 104 7.3 变革知识生产范式:重塑科研新样态 ·········································· 104 7
| ||
下载文档到本地,方便使用
共 132 页, 还有
4 页可预览,
继续阅读
文档评分


金融保险行业场景AI大模型数智化应用方案(213页 WORD)
双碳背景下热泵在湿度控制技术的应用