积分充值
 首页  上传文档  发布文章  登录账户
维度跃迁
  • 综合
  • 文档
  • 文章

无数据

分类

全部解决方案(1542)研究报告(392)城市民生(386)人工智能(247)能源双碳(224)企业案例(155)智能制造(149)供应物流(134)行业赋能(132)党建政务(124)

语言

全部中文(简体)(2218)英语(7)

格式

全部PPT文档 PPT(1254)PDF文档 PDF(746)DOC文档 DOC(280)XLS文档 XLS(3)
 
本次搜索耗时 0.022 秒,为您找到相关结果约 1000 个.
  • 全部
  • 解决方案
  • 研究报告
  • 城市民生
  • 人工智能
  • 能源双碳
  • 企业案例
  • 智能制造
  • 供应物流
  • 行业赋能
  • 党建政务
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PPT文档 PPT
  • PDF文档 PDF
  • DOC文档 DOC
  • XLS文档 XLS
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • ppt文档 AI+工业设备预测性维护解决方案(34页 PPT)

    图形 1 AI+ 设备(预测性维护)方案 图形 1 背景 加入星球获取更多更全的数智化解决方案 预测性维护是工业大数据和人工智能结合落地的重要应用场景 ,为企业带来多方 面效益 预测性维护( Predictive Maintenance ,简称 PDM )是以设备状态为依据的新兴的维护方式 ,在设备运行时对其主要部位进行周期性 或 持续监测 ,判定其所处的状态 ,预测状态未来的发展趋势 ,并依据该状态发展趋势和可能的故障模式 ,并依据该状态发展趋势和可能的故障模式 ,预先制定维修计划 ,确定机器应该修 理的时间、 内容、方式。预测性维护可以为企业带来以下效益: ☐ 降低维保成本 ☐ 延长设备寿命 ☐ 提高设备使用率 ☐ 减少库存成本 ☐ 提升生产安全 维护触发点 固定周期,不考虑设备实际 状态,可能带来过度维护 必要时,预留足够应对时间 给一线人员在故障前做出应对 维护方式 根据零部件的平均损坏率进行维护, 无法准确获得单体 设备运行状态时 单体设备状态可获知时 预测性维护与预防性维护虽然只有一字 之差 ,在理念上却截然不同。预防性维 护不考虑系统设备当前的运行状态和健 康状态 ,是按照已经安排好的时间来完 成计划内的维护工作 ,会引起过度维护 和维护不足的问题。 两种方式的特点对 比见右表。 方式 预防性维护
    10 积分 | 34 页 | 3.98 MB | 20 小时前
    3
  • pdf文档 预测性维护——数字化运维的制胜基石 -罗兰贝格

    预测性维护 03.2021 上海 / 中国 罗兰贝格 洞见 数字化运维的制胜基石 1 随着互联技术的革新、大数据的应用与积累、计算能力的提 升及相关模型理论的高速发展,人工智能的应用场景逐渐丰 富,并在近几年逐步过渡到实操落地。各行各业正积极探索 通过人工智能赋能的运营模式,并以此推动产业升级及长期 的运营转型。 在政策端,从2017年7月国务院印发的《新一代人工智能发 展 备品备件销售、设备维护及维修等)作为制造业的重要组成 元素,通过工业互联网及人工智能的深度融合打造出创新的 应用场景,并实现持续降本增效的趋势目标。 运维服务的发展进程主要分为四个阶段: 01 预测性维护是什么? 我们为什么需要它? 封面图片: koto_feja 01 / 运维服务的发展进程 从需求侧来看,完整的数字化运维服务将成为企业选择运维 服务供应商的主要考量维度之一。罗兰贝格针对全球领先制 能赋能的数字化运维解决方案将是新的趋势。 资料来源:罗兰贝格 基于故障 预测的维护 响应式 维修 计划性 维护 基于条件 的维护 "故障后维护" "预防性维护" "预测性维护" "状态监控式维护" 2 02 / 预测性维护运作原理 1.消极维护:这是运维服务最原始的方式,通常指当机械故 障后安排技术人员到场维修。由于此维护方式通常发生在 设备故障后,具有高度不可预测性及突发性,且设备本身 的损伤程度较高,易造成修理时间及费用垫高等情况,还
    20 积分 | 9 页 | 2.04 MB | 18 小时前
    3
  • pdf文档 智慧供应链预测算法应用

    2021年6月 供应链预测算法及应用 王桐 阿里巴巴-数字供应链事业部 Outline: • 预测场景及特性 • 预测算法研发路线及结果 • 预测应用案例 GMV预测 预测标的:GMV 提前期:未来1个月、一年 颗粒度: 行业*天*全国,行业 *月*全国 用途:支持整体经营计划(KPI制定,营销资源分配,供 应链资源分配) 评估口径:达成率 real/fcst (离线)商品销量预测:支持补货、调拨决策 (离线)商品销量预测:支持补货、调拨决策 (离线)仓单量预测:支持仓库、配送产能(人力)准备 (离线)GMV预测:支持长期经营计划 销量预测 预测标的:销量(需求) 提前期:未来1~8周 颗粒度: 货品*天*仓 用途:支持采购、补货、调拨决策 评估口径:minmax,加权平均 单量预测 预测标的:交易单/物流单数量 提前期:未来1天,未来1周 颗粒度: 货主*天*仓,行业 *天*仓 用途:支持仓库端人力准备 评估口径:1-MAPE,加权平均 供应链预测场景及特性 T T-1h T-1d T-1w T-4w T-8w T-1y 预测场景细分方式: • 预测标的:GMV、销量、单量、客服呼叫量、云计算请求量等各种不确定的需求 • 提前期:离线(长期(y, m)、中期(w)、短期(d))、实时(h) • 颗粒度:预测对象颗粒度(店铺、行业、类目;商品、sku、货品;货主、行业)*
    0 积分 | 10 页 | 2.83 MB | 3 月前
    3
  • ppt文档 智能工厂如何通过预测与控制实现降本增效

    1 实现降本增效 By :施耐德电气 梅峰 建材及矿业能力中心经理 如何通过预测与控制 智能工厂 智能工厂建设目标: 5 个方向 故障维修 预防维护 人工操作 机器操作 事后统计 质量预控 人工经验 智能决策 资源效率 安环第一 人 机 料 法 环 3 战略决策 持续发展 设备效率 业务运营 能效管理 生产工艺控制 设备级 生产级 控制级 企业级 管 理 质 量 管 理 设 备 管 理 物 流 管 理 原 料 管 理 数 字 矿 山 实时性 4 层架 构 智能化的三层深度 数字化 3 2 1 • 信息的记录、存储、查询、汇总、展示 • 移动 APP 访问信息 • 便于数据的追溯、比对、分析、总结 •智能预测 •智能分析 •智能决策 •让机器替代人形成强大劳动力 信息化 智能化 物理工厂 人的经验 经验知识化 • 物流 • 书面信息数字化 • 智能设备 自 动 数 据 采 集 • 自 动取样 • 在线分析 • 自 动感知 人 智 ” 到 “ 智机 3 层深 度 5 APC 智能预测与控制 6 借助于智能控制,可以消除人与人的差别 操作员不同,造成成本和质量上的差异 288 万 每月能耗成本节约 24 万 每年能耗节约 288 万 CO2 减排 8400
    20 积分 | 16 页 | 17.17 MB | 3 月前
    3
  • word文档 智慧钢铁行业预测AI大模型应用方案(186页 WORD)

    项目编号: 钢铁行业预测 AI 大模型 应 用 方 案 目 录 1. 引言...............................................................................................................6 1.1 钢铁行业现状............................ .........................................109 6.1.2 故障预测与诊断.......................................................................110 6.2 质量控制与预测...................................................... 2 产品质量预测模型...................................................................117 6.3 供应链管理.......................................................................................119 6.3.1 需求预测.......
    60 积分 | 197 页 | 302.02 KB | 5 月前
    3
  • word文档 智慧林业可行性研究报告

    智慧林业 可行性研究报告 目录 一、 智慧林业...........................................................................................3 1.1 概述.......................................................................... ,确保了林业信息 化建设的健康运行。本项目中的各个应用系统均以公共基础数据库 为中心,既避免了重复投资,实现了信息的充分共享,也减少了区 县林业局管理维护的难度,确保了数据的完整性、唯一性、准确性 和现势性。基本实现全市林业空间地理数据入库、更新、业务应用 与维护,相同比例尺之间的无缝漫游。形成信息全方位辐射、监管 多方面铺开、服务各层次跟进的林业信息化格局,推动我市现代林 业建设再上新台阶。 务广域性、复杂 性的特征,决定其必须依赖信息技术提供的强有力的数据分析与辅 助决策能力,支撑环境质量的多层次预测、推演、快速定位于溯源 要求,目前的支撑能力仍处在较为初级的数据获取与查询阶段,战 略层、规划层、分析决策等智能化程度还有待提升,以适应全市环 保发展要求。 (4)信息安全主动防御能力有待提升。随着大量信息系统投入 运行,全市环保上下形成了规模大、系统复杂、业务依赖性强的业
    10 积分 | 180 页 | 8.28 MB | 6 月前
    3
  • pdf文档 2025年全球感知技术十大趋势预测深度分析报告

    研究报告 2025 年全球感知技术十大趋势预测 2 前言 在当今时代,人工智能、大数据、物联网以及新型通信技术正以前所未有的速度蓬勃发展。 这些技术的不断进步,犹如一股强大的推动力,为感知技术的发展带来了前所未有的机遇。感知 技术,作为科技领域的关键一环,正站在变革的十字路口。 传统的单一传感模式,在智能化时代的浪潮下,逐渐暴露出其局限性。它已难以满足环境认 知、精确定 知、精确定位以及交互体验等多方面的严格要求。在智能化的大背景下,环境认知需要更加全面、 准确的信息获取,精确定位要求更高的精度和可靠性,而交互体验则追求更加自然、流畅的感受。 单一传感模式由于其自身的局限性,无法同时兼顾这些需求。 然而,2025 年的感知技术将迎来全新的发展格局。它将在多个前沿领域展现出令人瞩目的突 破。多模态融合技术,将多种传感器的数据进行深度整合,为环境认知提供更丰富、准确的信息; 市场前景以及丰富的商业落地案例。我们力求为读者呈现一幅全景式的未来感知技术图谱,让读 者能够清晰地了解感知技术的发展脉络和未来走向。 研究报告 2025 年全球感知技术十大趋势预测 3 目录 前言......................................................................................
    10 积分 | 36 页 | 1.01 MB | 5 月前
    3
  • pdf文档 颠覆性技术产业化指数报告(2025)

    20 积分 | 64 页 | 25.39 MB | 20 小时前
    3
  • ppt文档 以DeepSeek为代表的AI在能源行业的应用前景预测(29页 PPT)

    腾讯 以 Deep5eek 为代表 的 在能源行业的应用 前景预测 贾德香 博士、正高 国网规划计划领军人才、 国网能源院高级专家 注册电气师、 咨询师 OT Deep5eek 等 RI 大模型简介 Deep5eek 在能源应用前景 预测 0 3 挑战与应对策略 Deep5eek 等 RI 大 模型简介 20 世纪 50 ~ 70 年代是人工智能技术的萌芽时期。 大模型通常具有数十亿甚至千亿级别的参数, 使得模型能够捕捉到更多的细节和特征 ,提高了任务的准确性。 2 、训练数据海量。 AI 大模型需要训练大量数据才能发挥出其强大的 性能 ,这些数据来自于各种来源 ,如互联网、企业内部数据等。 3 、计算资源需求高。 由于参数规模庞大 , AI 大模型的训练需要高性 能的计算资源 ,如 GPU 集群、分布式训练框架等。 二、 AI 大模型的核心技术与特 大模型的核心技术与特 点 Te n c e n 腾 讯 Te n c e n 腾 讯 02,Deep5eek 等 RI 大 模型在能源应用前景 预测 n 国网光明电力大模型:(开源与闭源并举) 发输变配用、调度、交易 规划、建设、运行、检修、营销 n 南网,大瓦特 n 三峡集团“大禹”大模型 n 中核集团龙吟大模型 n 中国广核,“锦书”大模型 n 中国石油,昆仑大模型 n 中国石化,“胜小利”大模型
    10 积分 | 29 页 | 5.49 MB | 18 小时前
    3
  • pdf文档 2025年以DeepSeek为代表的AI在能源行业的应用前景预测报告

    1、参数规模庞大。AI 大模型通常具有数十亿甚至千亿级别的参数, 使得模型能够捕捉到更多的细节和特征,提高了任务的准确性。 2、训练数据海量。AI 大模型需要训练大量数据才能发挥出其强大的 性能,这些数据来自于各种来源,如互联网、企业内部数据等。 3、计算资源需求高。由于参数规模庞大,AI 大模型的训练需要高性 能的计算资源,如GPU 集群、分布式训练框架等。 4能源行业部分大模型 (一) ◼ 国网光明电力大模型:(开源与闭源并举) 9 ◼ 新能源发电优化: 1、精准的功率预测:DeepSeek可构建更精准的新能源发电预测模型,对太阳能、风能等发电功率进行提前预测。例如,针对某风光装 机占比达58%的省级电网,DeepSeek通过构建考虑新能源场站波动特性的动态安全域模型,将弃光率从19%降至3.2%,日前预测精度提高 至94.7%。 2、优化调度决策:基于精准的发电预测,AI 大模型可以综合考虑电网的负荷需求、不同 大模型可以对这些数据进行实时 分析和处理,监测电网的运行状态 。一旦发现异常情况,如电压波动 、电流过载、设备故障等,能够及 时发出警报,并对故障进行诊断和 定位,帮助运维人员快速排除故障 ,提高电网的可靠性和稳定性。 2、储能设备的优化控制:对于电池储能、抽水蓄能等储能设备,AI 大模型可以根据能源 需求和供应的变化情况,优化储能设备的充放电策略。例如,在电价低谷时段,控制储能 设备充电,储存多余
    10 积分 | 29 页 | 2.37 MB | 5 月前
    3
共 1000 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 100
前往
页
相关搜索词
AI工业设备预测测性预测性维护解决方案解决方案34PPT数字数字化运维制胜基石罗兰罗兰贝智慧供应供应链算法应用智能工厂如何通过控制实现降本增效降本增效钢铁行业钢铁行业模型186WORD林业可行研究可行性可行性研究报告2025全球感知技术十大趋势深度分析颠覆颠覆性产业产业化指数DeepSeek代表能源能源行业前景29
维度跃迁
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传,所有资料均作为学习交流,版权归原作者所有,并不作为商业用途。
相关费用为资料整理服务费用,由文档内容之真实性引发的全部责任,由用户自行承担,如有侵权情及时联系站长删除。
维度跃迁 ©2025 | 站点地图 蒙ICP备2025025196号
Powered By MOREDOC PRO v3.3.0-beta.46
  • 我们的公众号同样精彩
    我们的公众号同样精彩