鸿蒙2030白皮书 共筑万物智联的鸿蒙世界-华为万亿美元收入,占科技 领域总支出的 10%-12%,复合年增长率预计达到约 42% [2]。 然而生成式 AI 在 AIGC 上的应用仅仅是人工智能革命的开始。大模型的出现,全面提升 了 AI 的自然语言理解能力和通用推理能力,让 AI 具备自主完成复杂任务的可能,从而演进成 为能够感知环境、进行用户意图的自主理解、做出决策和采取行动的 AI Agent(智能体)系统。 - 4 - 行业趋势 整个元宇宙市场规模在 2030 年将达到 1.5 万亿美元 [3]。 虚拟世界和物理世界的进一步融合,主要体现在两个方面: 首先是允许用户以更自然和直观的方式与数字内容交互 [4]。人机交互方式从单模态、二维 平面,逐步迈向多模态、三维空间交互,用户无需与设备直接接触,就可以通过更加自然的手势、 肢体语言、视觉甚至意念等方式与数字世界进行互动,设备同时从多个通道获取信息,并整合 ������ ������ 户的意图和 关注点。而空间手势交互技术通过先进的传感器和算法,能够实时捕捉用户的手势动作,并将 其转化为虚拟世界中的操作指令。这些交互方式不仅提高了用户的操作效率和便捷性,也为用 户带来了更加自然的体验,增强了用户的沉浸感和参与感。 其次是更加逼真的沉浸式体验,包括感官的逼真性和虚拟物体的逼真性 [5]。感官逼真性是 指信息内容呈现的方式从 2D 平面提升至 3D 空间,甚至加入数字触觉、嗅觉等实现更多维度0 积分 | 41 页 | 3.36 MB | 6 月前3
2025年中国人工智能与商业智能发展白皮书:AI驱动商业智能决策,企业数字化转型的智脑引擎预训练过程中,LLM内嵌了大量的通用数据分析知识,并通过精细化的监督微调 (SFT)进一步加入专业领域的知识。通过集成这些具备数据分析知识的LLM,用户 不再需要深厚的数据分析技能,而只需具备一定的业务理解,就能够通过自然语言 与BI系统交互,轻松获得自己关注的业务问题的答案。这种转变极大地降低了数据 分析的门槛,使得更广泛的业务人员能够直接从数据中获得决策支持,提升了决策 的效率和精度。 ◼ AI通过增强BI的预 广泛的业务人员依然无法全面使用这些工具。然而,LLM通过在预训练阶段内嵌数 据分析知识,并通过监督微调(SFT)增强专业领域的分析能力,彻底消除了对数 据思维的依赖。用户只需具备一定的业务理解,通过自然语言与BI系统交互,就能 够获得所需的业务洞察。这一转变大大降低了BI的使用门槛,使得几乎所有业务人 员都可以轻松获得数据支持,从而推动了ABI的普及,用户渗透率接近100%。 决策 报表 IT 对话式数据查询 需求 分析 多轮 问答 对话式数据查询 思路拆解 数据查询 异常检测 报告生成 趋势预测 归因分析 对话式数据查询 指标检索 看板检索 组建检索 表检索 • 提供基础自然语言处理能力,如文本生成、语音识别,赋能用户与系统的交互,提升用户体验 和初步数据交互效率。 对话管理 对话式数据查询 意图分类 • 优化对话流管理(如意图识别、上下文理解),赋能更智能的对话引导和用户需求精准匹配,10 积分 | 40 页 | 8.31 MB | 6 月前3
上海科学智能研究院:2025年科学智能白皮书施普林格·自然 张嘉慧 施普林格·自然 Rebecca Dargie 施普林格·自然 John Pickrell 施普林格·自然 数据支持 巨 蓉 施普林格·自然 黄珏珺 施普林格·自然 陈佳怡 施普林格·自然 Vivek Aggarwal 施普林格·自然 项目协调 徐晓创 复旦大学 杨燕青 上海科学智能研究院 王晓夏 施普林格·自然 丁思嘉 丁思嘉 施普林格·自然 张瑶瑶 施普林格·自然 排版设计 赵新武 施普林格·自然 Sou Nakamura 施普林格·自然 专家委员会 漆 远 复旦大学、上海科学智能研究院 沈维孝 复旦大学 吴力波 复旦大学、上海科学智能研究院 张人禾 复旦大学 科学智能白皮书 2025 2 3 第一章 序言 第一章 序言 1 科学研究促进人工智能创新。传统科研 范式大致可分为经验归纳(实验科学)、理 论建模(理论科学)、计算模拟(计算科学) 以及数据密集型科学 2。实验科学由自然现 象和实验结果归纳出一般性规律,但没有抽 象出经验规律背后的普适理论。理论科学基 于自然现象或实验结果,提炼科学问题并形 成科学假设,然后运用逻辑推理和数学分析, 构建普适理论,但难以在复杂系统中实验验 证。计算科学以科学模型为基础,通过数值20 积分 | 29 页 | 2.74 MB | 6 月前3
2025年应用全生命周期智能化白皮书从“工具执行者”进化为“智能决策体” 重塑“以客户为中心”的价值链 涌现“需求即服务”的应用创新范式 算法 算力 数据 安全 人工智能驱动 数字基础设施 数据联接价值 软硬系统自主化 深度学习、强化学习 自然语言处理等 模型库、案例库、知识库 工具库、大型开源平台等 数据融合、数据分析 数据应用等 应用产品安全、供应链安全 (应用开发、运行、运维) 数字 应用生态 硬件开发 数据共享 促进关键领域的应用智能化发展,提升产业韧性,抵御外部供 应链风险,为应用智能化生态的长期安全稳定保驾护航。 推动人工智能蓬勃发展的前提是应用现代化的发展成熟和壮大。未来,随着深度学习、强化学习、自然语言处理 等人工智能技术的不断迭代创新发展,AI 将在更多垂直领域实现深度应用,不仅将提升生产效率和服务质量,还将创 造新的商业模式和市场机会,使人工智能成为推动社会进步的重要力量。应用现代化走向智能化发展也将迎来“技术 能决策体”,能够自主感知环境,分析数据,做出决策,甚至进行自我 优化和升级。物联网与 5G 技术催生智能系统的群体化演进,形成协同工作的群体,共同完成复杂的任务,实现资源的 优化配置和高效利用。自然语言处理与多模态交互技术的突破,则加速重塑人机协作的认知界面,使得人机协作更加 便捷和高效。复杂系统向“组装式”模块化架构演进则为人机协作提供了灵活可扩展的载体,不同的功能模块可以独 立开发、测20 积分 | 59 页 | 8.39 MB | 5 月前3
AI+HR黑科技秘笈-AI赋能人力资本智能化变革第一部分 | 场景:人岗匹配 内容: 让 AI 技术提升人岗匹配效果,我们做了这些探索 解锁这项 AI 黑科技,马上实现人岗匹配自由 AI 黑科技: Embedding、知识图谱(KG)方法、自然语言处理(NLP)、非线性树模型、deep 模型、 BERT、 Word2Vec 模型等 本期和大家讨论下 “人岗匹配排序的探索与实践”。从人力资源管理的发展来看,人岗匹配大致 经历了三个阶段 HR 从机械、琐碎的招聘工作中解放出来。 第一部分 让AI技术提升人岗匹配效果,我们做了这些探索 3 第一部分 | 那么,实现 AI 人岗匹配背后的依据和逻辑又是什么呢? e 成科技基于前沿的自然语言处理技术 和深度学习模型,并结合大量数据和知识图谱,通过不断探索和反复实践,形成一套高效的人 岗匹配推荐算法系统,下面院长将详细为大家介绍这套系统及其背后的逻辑。 在人岗匹配的任务中存在 特征介绍 常见的 JD 如下图 1 所示,其中包含格式化离散数据和整段文本数据,从整段文本数据获取招聘 意图是提取 JD 特征的重点难点。 为了更好的解决该问题,我们分别引入知识图谱(KG)方法和自然语言处理(NLP)方法,其 中 KG 负责去充分提取文本中实体的关系和联系,NLP 则更好的获取 JD 本文和 CV 文本相似性 信息。因涉及个人隐私此处不展示 CV 信息。 01 特征为王20 积分 | 98 页 | 8.41 MB | 1 月前3
华为:2025智能世界的ICT岗位与技能白皮书该地区高校构建了成熟的生态系统,核心是与全球科技领军企业的深度合作。AI、机器人技术、数 据科学与创新是其合作核心,依托高知名度的研究中心、嵌入式机构与产业驱动的研究项目展 开。合作项目覆盖AI、自然语言处理(NLP)、先进制造与跨学科学习等领域;AI创新枢纽常作为 技能储备渠道,与实战项目及基础研究紧密挂钩。 代表性高校: 卡内基梅隆大学、佐治亚理工学院、麻省理工学院(MIT)、德克萨斯大学达拉斯分校、多伦 ICT基础架构 �.AI基础设施工程师 �.AI运营工程师 �.AI/机器学习平台工程师 �.AI训练工程师 �.AI应用开发工程师 �.AI部署工程师 7.大型语言模型安全研究员 8.自然语言处理(NLP)工程师 �.AI算法工程师 ��. AI和数据治理主管 ��. AI产品经理 1.前端工程师 2.后端工程师 3.全栈工程师 4.质量保证工程师 5.开源系统工程师 T 岗 位 与 技 能 55 高 中 低 AI基础设施工程师 AI运营工程师 AI/机器学习平台工程师 AI训练工程师 AI应用开发工程师 AI部署工程师 大型语言模型安全研究员 自然语言处理(NLP)工程师 AI算法工程师 AI和数据治理主管 AI产品经理 前端工程师 后端工程师 全栈工程师 质量保证工程师 开源系统工程师 DevOps工程师 物联网系统工程师10 积分 | 180 页 | 3.30 MB | 1 月前3
2025年算力运维体系技术白皮书-中国信通服务应用 于消费互联网、行业互联网等领域的常规计算能力,通常在云计算及分布式计算中, 以 CPU 为代表。 智算算力场景:支撑人工智能算法训练与推理的专用计算资源,应用于人工智能 计算领域,处理自然语言、图像识别、语音识别等任务,以 GPU 为代表。 超算算力场景:面向科学研究、工程仿真等高性能计算场景的集群化计算能力, 应用于需极高计算能力的科研及工程领域,处理大量数据和复杂的科学计算任务,如 《防雷检测 报告》 7 配 电 线 路 红 外普查 ★接头温升≤65K 6M 故 障 停 电 次 数=0 红外热像仪 《 红 外 图 库》 备注:周期以“N”表示自然日、“M”表示自然月、“Y”表示自然年;★为强制项,☆为推荐项。 2.1.2.3 关键风险与对策 算力运维体系技术白皮书 - 10 - (1). 双路市电同时失压:启用“2+1”柴发并机冗余,满足 T3-T4 《水处理月报》 6 风管漏光检测 ☆ 漏 光 点 ≤ 1 处 /10m 1Y 送风效率≥ 95% 强光灯、烟雾 笔 《 漏 风 测 试 记 录》 备注:周期以“N”表示自然日、“M”表示自然月、“Y”表示自然年;★为强制项,☆为推荐项。 2.1.3.3 节能优化 (1). 冷通道封闭+AI 变频:将 CRAH 风机功耗降低。 (2). 冷却水温度重设:基于 Wet-Bulb 追踪,降低冷却泵功耗。10 积分 | 74 页 | 1.36 MB | 23 天前3
面向5G-A与AI融合驱动的算网智一体化解决方案白皮书(2025年)-中移智库AI 应用提供确定性、高性能的连接服务。 智为大脑:智能(AI)不再是以外挂工具的形式存在,而是深度内生于网络与算力基础设施的核心。 借助大模型、智能体(Agent)与知识增强等能力,系统能够理解自然语言意图,实现从网络配置、 故障诊断到业务优化的闭环自治,将运维人员从繁琐低效的劳动中解放,并大幅降低企业用网和用 智的门槛。 5G-AxAI 算网智一体化技术体系以智能 5G-A 网络为根基,使其成为可感知业务意图、动态调优的神 务则可自动选择 WiFi 或有线网络以实现高效传输。 3.2.2 意图化用网 意图化用网是实现网络从“配置驱动”向“意图驱动”演进的核心技术。它通过智能体与大模型技术, 深度理解运营运维人员的自然语言指令、实时感知专网业务状态与资源容量,将高层的业务意图(如 “为 AGV 保障 20ms 低时延”)自动翻译、分解并生成精准的网络策略。这一过程彻底改变了传统 依赖命令行逐条配置的复杂模式, 智能化网络内核,实现意图精准识别、资源动态分配与运维自动化,显著提升网络自优化、自决策 与自适应能力。 系统集成推理框架、Agent 编排框架及 RAG 等原子能力,支持对业务意图的实时解析与响应。例如, 基于自然语言的运维指令可被自动转化为网络策略,动态生成符合 SLA 要求的虚拟子网;借助 RAG 增强知识库,实现故障精准定位与自愈,大幅降低人工干预需求。 系统还支持多智能体协同与资源按需调度,根据业务上下文与实时网络状态,智能调用相应10 积分 | 24 页 | 4.83 MB | 1 月前3
2025数字孪生视觉语言白皮书-易知微、青色(前沿、活力)。 2 金融/法律:深蓝色(高智感)、浅蓝色(科技感)金色(财富)、深灰(权威)。 3 医疗/健康:蓝色、白色(洁净)、绿色(健康)、青色(镇静)。 4 环保/农业:绿色(自然)、橙色(阳光)、金黄(丰饶)、青色(纯净)。 5 教育/文化:暖黄(传统文化)、蓝色(稳重)、红色(大气)、灰色(典雅)。 6 政府机关:深蓝(严谨)、灰色(信任)、橘色(党政)、红色(党政)。 保真物理世界的仿真还原。 在孪生体管理的过程中,对模型材质、贴图、阴影进行配置项调试,以所见即所得的 编辑模式,直观呈现效果。编辑器场景中可添加光源类型、粒子特效、配置环境、天 气等效果,实现自然环境氛围,更加贴合物理效果。对接真实的天气系统和光照系统, 根据实际情况实现天气变换和 24 小时光照变化的实时渲染。 数字孪生世界白皮书 81 5) 多元、深入的数据融合: 多元的业 3D 场景,赋能数 字孪生与空间智能。 EasyHuman AI 融合先进 AI 技术,打造"可看、可听、可说、可互动"的智能数字人,为企业提供品牌 化、智能化、个性化的交互体验,同时满足用户对自然、有温度的智能服务的需求,实现 数字孪生世界白皮书 91 企业降本增效与用户体验提升的双赢。 EasyMap 是一款地图辅助工具,利用 EasyMap 能够快速获取地图子组件所需地图范围数据,也10 积分 | 119 页 | 15.89 MB | 1 月前3
医疗健康大模型伦理与安全白皮书(93页 WORD)概述 1.1 大语言模型技术发展概述 近年来人工智能(AI)技术的飞速发展,各行各业正在经历一场颠覆式的科技革命,早期的模型以 判别式为主,主要通过大量的自然语言预训练语料,来让模型学习词句的语意,从而实现文本分类 、命名实体识别(NER)、关系抽取等偏向于理解的任务,此类判别式模型也通常只能解决该场景 下的 特定任务 , 迁移 性和 可扩 展性 较 33.8%,研究报告指出预计未来几年内,中国 互联网医疗市场的规模将保持高速增长态势,用户对互联网医疗服务有着迫切和强烈的需求[5]。随 着医疗数据的快速增长和诊疗需求的日益复杂,大语言模型凭借其强大的自然语言处理能力,成为这 一行业中不可忽视的技术力量。它能够高效整合和分析海量医疗文献、研究数据和患者记录,为医 疗行业提供更多的智能化支持工具。然而,医疗行业在引入大语言模型时面临着独特的挑战。与其 学习最新的医疗知识,模型涵盖了从基础医学、临床医学到公共卫生等各个领 域。无论是疾病的病 理机制、药物的作用机理,还是最新的治疗指南,模型都能提供详尽的信息。 其次通过达模型强大 的自然语言处理和交互能力,医疗健康大模型可以理解和生成高质量的医学文 本,与医护人员和患 者进行自然流畅的交流。此外,利用医疗健康大模型高效的数据处理与分析能 力,能够快速分析大 量的医疗数据,发现有价值的医学信息和趋势。这 种能力不仅有助于疾病的早期发现和精准诊断,20 积分 | 93 页 | 12.19 MB | 1 月前3
共 55 条
- 1
- 2
- 3
- 4
- 5
- 6
