积分充值
 首页  上传文档  发布文章  登录账户
维度跃迁
  • 综合
  • 文档
  • 文章

无数据

分类

全部人工智能(28)大模型技术(28)

语言

全部中文(简体)(28)

格式

全部DOC文档 DOC(13)PDF文档 PDF(9)PPT文档 PPT(6)
 
本次搜索耗时 0.030 秒,为您找到相关结果约 28 个.
  • 全部
  • 人工智能
  • 大模型技术
  • 全部
  • 中文(简体)
  • 全部
  • DOC文档 DOC
  • PDF文档 PDF
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 2025年以计算加速迈进智能化未来-IDC新一代云基础设施实践报告

    以计算加速迈进智能化未来 ⸺IDC新一代云基础设施实践报告 趋势:云服务能力持续跃升,加速企业数智化转型与创新 01 目录 1.1 技术全面升级,为复杂的企业在线业务提供保障 1.2 软硬一体协同优化,应对AI时代激增的数据冲击 1.3 持续的融合创新,助力企业的国际化布局 挑战:企业多元业务需求与海量AI数据的冲击 02 2.1 在线业务面临性能与效率的极限挑战 �.� AI数据处理与计算协同的复杂度激增 小鹏汽车 4.2 微帧科技 4.3 嘎嘎射击 4.4 蚂蚁集团ZOLOZ 前言 IDC分析师认为:全球AI基础设施革新的浪潮中, 算力需求的爆发正在驱动云计算与边缘计算深 度融合,行业定制化与智能化服务加速渗透,成本优化与绿色计算将成为竞争的关键。未来,基 础设施的核心矛盾将从“资源供给”转向“效率与价值平衡”,技术迭代将围绕“弹性算力调 度”“数据主权治理”“垂直场景深度适配”三大主线展开。 etes)、服务监控、服 务治理以及相关的配置管理等云原生能力,在提高弹性伸缩的速率的同时,持续增强自动化 预测能力以及优化自适应策略。 1.3 持续的融合创新,助力企业的国际化布局 面对智能化、全球化、融合化的发展浪潮,国内云服务商凭借自身在互联网创新、跨境电商以及 AI创新应用等领域的创新优势,不仅可以为自身拓展新的广阔发展空间,也为全球市场带来新的 发展机遇与变革动力。 互联网
    10 积分 | 27 页 | 5.31 MB | 3 月前
    3
  • word文档 智慧地铁城市轨道交通行业AI大模型应用设计方案

    .22 2.2.2 故障模式识别与预警..................................................................23 2.3 客户服务智能化..................................................................................26 2.3.1 虚拟客服助手. 为了应对这些挑战,各城市正在积极探索和应用新技术。其 中,人工智能(AI)作为现代科技的代表,对提高城市轨道交通的 管理效率和服务水平具有极大的潜力。AI 技术能够实现对客流预 测、设备监测、线路优化等多方面的智能化管理,有望在降低运营 成本、提升服务质量方面发挥重要作用。 以下是城市轨道交通行业现状的主要特点:  高成本: o 建设和运营费用高昂,需长期投入。  大客流: o 高峰期客流量剧增,部分线网超负荷运转。 高峰期客流量剧增,部分线网超负荷运转。  设施老化: o 部分老旧设施影响安全与服务质量。  技术滞后: o 老旧系统难以满足现代化需求。 通过信息技术与 AI 技术的深度融合,未来城市轨道交通行业 有望实现智能化转型,从而优化资源配置、提升乘客体验,并促进 可持续发展。 1.2 AI 大模型的定义与应用背景 在当今快速发展的科技背景下,人工智能(AI)大模型的定义 与应用日益受到重视。AI 大模型通常指的是训练时使用海量数据的
    40 积分 | 154 页 | 284.34 KB | 5 月前
    3
  • pdf文档 算力与场景双驱动,智能软件研发进入“平台 服务”融合新阶段 头豹词条报告系列

    未经平台授权,禁止转载 行业分类: 信息传输、软件和信息技术服务业/软件开发 信息传输、软件和信息技术服务业/软件开发 智能软件研发行业是指专注于开发和应用具有人工智能(AI)技术的软件系统与服务,为各行各业提供智能化解决方案,旨在提升业务效 率、优化决策过程、增强用户体验及创造新的价值和服务模式的创新性技术领域。在数字化转型的背景下,各行各业对智能软件的需求日益增 长。未来,智能软件将更加注重个性化和用户体 ,这类软件可以通过学习用户的习惯自动完成文档编辑、邮件 回复、日程安排等重复性工作。 嵌入式软件是指专门为运行在嵌入式系统上的应用设计的软件,它集成了人工智能算法与技术,以实现特定设备或系统的智能化操作。这 类软件通常被优化以适应有限的硬件资源,如处理器性能、内存和功耗限制,同时提供诸如自动控制、数据采集与分析、故障预测及自我 修复等功能。嵌入式智能软件广泛应用于物联网(IoT)设备、智能 新兴技术软件是指那些基于最新科技发展,旨在革新传统工作方式、提升效率和用户体验的软件解决方案。这类软件常常融合了人工智能 (AI)、机器学习、大数据分析、云计算、物联网(IoT)等前沿技术,为用户提供更加智能化、自动化以及互联的功能。它们不仅能够加 速数据处理和决策过程,还支持预测性分析、自然语言处理、增强现实/虚拟现实体验,并且可以通过持续的学习和适应来改进性能。 信息安全软件是专为保护计算机系统、
    10 积分 | 18 页 | 5.48 MB | 3 月前
    3
  • pdf文档 基于大语言模型技术的智慧应急应用:知识管理与应急大脑

    erative pre-trained transformer,GPT),人工智能领域 自然语言处理方向的重大突破,引领了大规模预训 练模型及应用研究的热潮。大语言模型技术的迅猛 进展正深刻地影响着机器系统智能化的轨迹,标志 着进入一个新的人工智能时代。从 BERT 到 GPT [1-2], 这些模型通过深度学习和海量数据训练,不仅推动了 自然语言处理技术的边界,也正在改变知识获取和创 新的模式,将对应急管理体系发展、能力要求以及实 言模型的知识获取与创新的原理之上,探讨了其在应急管理信息化建设中的应用,针对智慧应急中面临的建设困境以及业务系 统智能化水平的局限,提出了基于大语言模型技术重构智慧应急的知识管理模式,在此基础上构想能够协同创新、全域感知、 决策支持的应急大脑,从而实现整体业务系统智能化水平从感知智能到认知智能的提升。 关键词 大语言模型,智慧应急,知识管理,应急大脑 引用格式 龚晶,黄欢. 基于大语言 学 报 径,使其适应人工智能大模型时代的治理要求。 本文在分析大语言模型的知识获取原理与知识 创新的潜能之上,探讨了其在应急管理信息化建设 中的应用前景,针对当前智慧应急中面临的挑战以 及业务系统智能化水平的局限,提出了基于大语言 模型技术重构智慧应急的知识管理模式以及应急大 脑的概念框架,为应急管理信息化建设提供了新的 视角和技术路径。 1 大语言模型原理 大 语 言 模 型 通 过 词 嵌
    20 积分 | 8 页 | 3.21 MB | 1 天前
    3
  • ppt文档 基于大模型的企业架构建模助力银行数字化转型应用方案

    大模型能够快速分析海量数据,识别潜在风险,提升 银行风险管理的精准性和效率。 辅助风险管理 通过大模型技术,银行可以更高效地评估客户信用状况, 缩短信贷审批周期,提升客户体验。 优化信贷审批 大模型为银行提供智能化的业务解决方案,支持个性 化产品设计和精准营销,增强市场竞争力。 推动业务创新 大模型技术对金融业变革的推动作用 企业架构建模在转型中的核心价值 • 企业架构建模通过将战略目标分解为具体的业 析和价值挖掘,无法为 决策提供有力支持。 1 2 3 客户体验与智能化服务缺口 客户体验不一致 传统银行服务模式难以满足客户个性化 需求,线上与线下服务体验存在割裂, 影响客户满意度和忠诚度。 智能化服务不足 现有系统缺乏智能化能力,无法提供 精准的客户画像和个性化推荐,导致 客户服务体验不够智能化和便捷。 响应速度慢 由于系统架构和业务流程的限制,客户 需求的响应速度较慢,无法满足客户对 的业务瓶颈和优化点,提升业务运 营效率。 大模型通过构建业务知识图谱,将 业务实体、关系和规则进行结构化 表示,支持业务模型的深度分析和 推理。 大模型在业务架构建模中的应用逻辑 智能化优化 场景化应用 知识图谱构建 大模型能够实时集成多源异构数据,确 保业务模型的实时性和准确性,支持实 时决策和业务监控。 大模型能够根据实时业务变化,动态调 整业务模型,确保模型与业务环境的一
    40 积分 | 56 页 | 11.28 MB | 5 月前
    3
  • pdf文档 大模型技术深度赋能保险行业白皮书151页(2024)

    在保险行业的广泛应用场景和显著价值。这些案例涵盖了客户服务、理赔定损、营销推广、 承保核保等多个方面,它们充分证明了大模型技术在提升服务效率、优化客户体验、降低运 营成本、增强风险管理能力等方面的巨大潜力,为保险行业的智能化转型提供了有力的实 践支撑。 更重要的是,我们深刻认识到大模型技术与保险行业的深度融合,不仅将推动保险业 务模式的深刻变革,还将重塑保险行业的竞争格局和生态体系。通过精准预知风险、主动管 理 最后,我们要诚挚感谢所有参与白皮书编写的专家学者、行业同仁和技术伙伴。正是大 家的共同努力和无私奉献,才使得这本白皮书得以顺利问世。我们将继续秉持开放、合作、 创新的精神,与各界携手共进,共同书写保险行业智能化转型的新篇章! � CONTENTS 目录 1.引言· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 数据模式。 今年5月,OpenAI在其春季发布会上推出了他们的最新旗舰模型:GPT-4o,该模型具 备强大的多模态实时交互能力。其对音频输入的响应时间最短为0.232秒,平均为0.32秒, 智能化、高效化PC的需求。在产业链方面,AI PC的兴起对芯片厂商构成利好,推动其技术 创新与产品迭代。例如,高通、微软推出的基于骁龙X Elite芯片的“Copilot+PC”以及英特 尔的下一代酷睿Ultra
    20 积分 | 151 页 | 15.03 MB | 1 天前
    3
  • word文档 基于AI大模型Agent智能体商务应用服务设计方案(141页 WROD)

    市场需求,并自动调整采购计划,以确保供应链的高效运转。 其次,商务 AI 智能体的应用不仅限于单一的业务环节,而是能 够贯穿整个企业价值链。从市场营销到财务管理,从人力资源管理 到产品研发,AI 智能体都能够通过智能化的数据处理和分析,帮助 企业实现精细化管理和创新驱动。例如,在市场营销中,AI 智能 体可以通过社交媒体数据分析,识别潜在客户群体,并精准投放广 告,从而提高市场推广的效率和效果。 在设计和实施商务 驱动的推荐系统可以根据用户的 购买历史和偏好,推荐个性化的产品和服务,提升转化率。 综上所述,AI 智能体在商务场景中的应用具有重要的现实意义。 它不仅能够帮助企业应对复杂多变的商业环境,还能通过智能化和 自动化的手段,提升整体运营效率和竞争力。因此,制定一套切实 可行的商务 AI 智能体应用服务方案,对于企业在数字化时代的发 展至关重要。 以下是 AI 智能体在商务场景中的主要应用领域及其潜在效益 智能体应用服务方案设计的核心目标是通过智能 技术提升企业运营效率、优化决策流程,并增强客户体验。方案的 实施范围涵盖企业内部管理的自动化、外部客户服务的智能化,以 及数据分析与预测能力的全面提升。具体而言,目标包括以下几个 方面:首先,实现业务流程的智能化升级,减少人工干预,提高处 理速度和准确性;其次,通过数据驱动的分析与预测,为企业提供 更具前瞻性的决策支持;最后,构建智能客服系统,提供全天候、
    10 积分 | 141 页 | 647.35 KB | 1 天前
    3
  • word文档 DeepSeek AI大模型在工程造价上的应用方案

    ...............................................................................132 1. 引言 在当今数字化和智能化迅速发展的背景下,工程造价行业面临 着前所未有的机遇与挑战。传统的工程造价方法依赖大量的人工计 算和经验判断,不仅耗时费力,还存在一定的主观性和误差率。随 着建筑项目的复杂性和规模不断增加,传统方法已难以满足高效、 而在住宅建设项目中,则侧重于材料成本和施工周期的优化。 综上所述,DeepSeek-R1 大模型在工程造价领域的应用,不 仅能够显著提升工作效率和准确性,还能为行业带来全新的智能化 解决方案。通过将先进的人工智能技术与传统工程造价方法相结合, 我们有信心推动工程造价行业迈向更加智能化、精细化的未来。 1.1 项目背景 随着建筑行业的快速发展,工程造价管理在项目全生命周期中 的重要性日益凸显。传统的造价管理方法主要依赖于人工经验和历 人工经验和历 史数据,存在效率低下、误差率高、适应性差等问题。尤其是在当 前建筑项目规模日益扩大、复杂度不断提升的背景下,传统方法已 难以满足精细化、智能化的管理需求。近年来,人工智能技术的迅 猛发展为工程造价领域带来了新的解决方案。DeepSeek-R1 大模 型作为一种先进的深度学习模型,具有强大的数据处理能力和智能 化分析能力,能够有效提升造价管理的精确度和效率。 在当前的工程
    0 积分 | 138 页 | 252.70 KB | 5 月前
    3
  • ppt文档 从DeepSeek探讨大语言模型在建筑及能源行业的应用趋势和技术方法

    等带来的新范式 大语言模型应用的科研案例 · 临近奇点: AGI 将带来颠覆 结论和展望 …… 长期以来,能源领域人工智能止步于信息化阶段,发展范式陷入困境 15/80 口能源领域智能化目前大多停留在数据采集和信息展示阶段,尽管研究成果丰富,但 实际应用有限,尤其难以突破落地应用的瓶颈 期待发展趋势 — - 现有发展趋势 口主要解决数据采集和信息展示,停 留在“展示大屏”阶段 强大的计算能力,推动算法复杂性提升 · 算 法 :更加精准、高效的智能算法,支持决策优化 · 数据: 数据规模和质量驱动模型训练与性能优化 传统模式的局限性: · 靠经验驱动,无法快速适应复杂变化 · 难以扩展,效率低,智能化程度受限 1. 人工智能民主化: Al 技术触手可及 · 简化使用:通过用户友好的界面和预训练模型,大语言模型使得 Al 技术更加易于获取和使用,即 使是没有深厚编程背景的能源专业人士也能轻松应用。 支撑范式突破:实现能源人工智能个 性 化方案的 "3 D 打印 "! 26/30 大模型的特性: · 工程化产物:大模型是基于现有技术的“大工业流水线式”工程化成果 · 柔性 制造:在实现智能化的过程中,需要更灵活的开发与部署方式 实现的关键: · 工程化要求:需要熟练的工程实现人员参与,确保模型从实验到生产的平稳过渡 · 高投入:必须依赖大数据、大算力、大资金和大能耗的支持,推动模型性能最大化
    10 积分 | 78 页 | 33.88 MB | 5 月前
    3
  • word文档 铁路沿线实景三维AI大模型应用方案

    算法,分析沿线数据,实现对铁路状态的实时监控和 预测,提升突发情况的应对能力。 3. 打造一套智能化的决策支持系统,通过大数据分析,为铁路沿 线的维护、调度和管理提供科学依据。 4. 实现与现有铁路管理系统的无缝对接,提升数据利用效率,实 现资源的共享与协同。 5. 推动铁路沿线的绿色管理,通过智能化手段实现更为高效的资 源配置与环境保护。 本项目希望通过技术的引入和整合,不仅提升铁路的运行安全 低碳环保的运输模式支持可持续发展战略 在这种背景下,开发铁路沿线实景三维 AI 大模型的应用方案 显得尤为重要。该方案不仅将提高铁路运输的安全性与效率,还将 通过智能化服务为旅客提供更加便捷的出行体验,为货运企业提供 精准的物流解决方案,最终达到推动铁路运输现代化、智能化的目 标。 1.2 现有铁路管理模式的不足 在当前的铁路管理模式中,尽管已经运用了多种信息技术手 段,但仍然存在一些显著的不足。这些不足主要体现在管理效率、 接影响了管理工作的连续性和稳定性。 面对以上不足,现有的铁路管理模式急需进行全面的升级与改 善,以提升整体的安全性和效率。引入三维实景 AI 大模型技术, 将有助于解决这些短板,实现信息化、智能化管理,提升铁路管理 的科学决策能力。通过实现数据的自动采集与处理、增强多方信息 共享,铁路管理将能够更加精准地应对各种风险和挑战,确保铁路 系统的安全与高效运行。 1.3 实景三维 AI 大模型的优势
    40 积分 | 200 页 | 456.56 KB | 5 月前
    3
共 28 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
2025计算加速迈进智能智能化未来IDC一代新一代基础设施基础设施实践报告智慧地铁城市轨道城市轨道交通行业AI模型应用设计方案设计方案算力场景驱动软件研发进入平台服务融合阶段头豹词条系列基于语言技术应急知识管理大脑企业架构建模助力银行数字数字化转型深度赋能保险保险行业白皮皮书白皮书1512024Agent商务应用服务141WRODDeepSeek工程造价工程造价探讨建筑能源能源行业趋势方法铁路路沿沿线铁路沿线实景三维
维度跃迁
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传,所有资料均作为学习交流,版权归原作者所有,并不作为商业用途。
相关费用为资料整理服务费用,由文档内容之真实性引发的全部责任,由用户自行承担,如有侵权情及时联系站长删除。
维度跃迁 ©2025 | 站点地图 蒙ICP备2025025196号
Powered By MOREDOC PRO v3.3.0-beta.46
  • 我们的公众号同样精彩
    我们的公众号同样精彩