DeepSeek洞察与大模型应用-人工智能技术发展与应用实践DeepSeek洞察与大模型应用 人工智能技术发展与应用实践 联通数据智能有限公司 史树明 2025年 -1- 目录 Contents 02 03 01 04 05 -2- • DeepSeek是私募量化巨头幻方量化旗下的一家大模型企业,成立于2023 年5月份。 • 幻方量化营收:作为中国头部量化对冲基金,曾管理资金规模超160亿美 元(2019年),年管理费收入超过3亿美元。 DS作为一款现象级应用,对全社会开展了一次人工智能科普再教育,DS C端应用人人装,人人感受人工 智能,政府、企业管理者认识到人工智能战略意义,由探索尝试,升级为战略布局,市场进入爆发期 DS上线20日,日活超4000万,已达到ChatGPT 74%,成为 C端现象级应用。微信、钉钉等头部应用纷纷接入 截至2月15日,全国10省省委书记将人工智能作为 新春第一会重点部署,B端大模型应用进一步加速 省份 部署实施“人工智能+”行动 山东 建立科技创新和产业创新融合机制 湖北 到2030年,具有全国影响力的科技创新高地加快形成 -10- DeepSeek影响:格局被打乱,AI竞争进入第二阶段 C端AI应用市场格局重构,新入局者迎来机遇 B端客户全面评估DS影响,重新论证基础模型选型 DS国内登顶、全球仅次于GPT,月均活跃用户数跃居第一, 全球全端DAU近1.2亿;纳米AI搜索(原360)将其核心模10 积分 | 37 页 | 5.87 MB | 6 月前3
DeepSeek在金融银行的应用方案DeepSeek 在金融银行的应用方案 2025 年 02 月 21 日 目 录 1. 引言...............................................................................................................6 1.1 DeepSeek 技术概述................ .............................................................................9 1.3 DeepSeek 在金融银行的应用前景.....................................................10 2. DeepSeek 技术基础........................ 数据挖掘与分析..................................................................................20 3. 金融银行应用场景......................................................................................22 3.1 风险管理10 积分 | 154 页 | 527.57 KB | 6 月前3
人工智能在电力电子中的应用20 积分 | 62 页 | 7.40 MB | 1 天前3
基于模型定义的MES平台及应用方案(75页)20 积分 | 75 页 | 12.47 MB | 1 天前3
金融-DeepSeek银行部署加速,AI金融应用迎来跃迁DeepSeek 银行部署加速, AI 金融应用迎来跃迁 分析师:闻学臣 执业证书编号: S0740519090007 分析师:王雪晴 执业证书编号: S0740524120003 分析师:苏仪 执业证书编号: S0740520060001 联系人:蒋丹 Email : jiangdan@zts.com.cn | 证 券 研 究 报 告 | DeepSeek R1 671B 的应用效果,有望进一步催生银行落地应用。 n 我们认为金融行业人工智能的应用价值大体可以分为三个层次: 降本增效,价值创造与决策赋能。在实际银行落地应用 中,可能包括: 1 )降本增效:智能客服、信贷审批、合同质检; 2 )价值创造: AI 编程、智能风控、智能营销等; 3 ) 决 策赋能: 深度分析和决策辅助。 n 从实际落地应用情况看, 大行发力更早, 储银行、浦发银行、江苏银行等也有较为领先布局应用。 AI 一体机的出现为机构提供了全新的解决方案,凭借其开箱 即 用、软硬件一体化设计等优势, 正在成为很多中小银行智能化转型的重要选择。 n 建议关注:宇信科技、京北方、天阳科技、长亮科技、百融云等。 n 风险提示 : AI 技术落地不及预期、竞争加剧、信息更新不及时等。 2 核心观点 DeepSeek 开源、低成本、强推 理 助推银行业应用 1 n DeepSeek10 积分 | 25 页 | 1.44 MB | 1 天前3
DeepSeek消费电子行业大模型新型应用最佳实践分享DeepSeek 消费电子行业大模型新型应用最佳实践分享 陈树荣 腾讯云智能商业化 2025.03 LEVEL 1 研发模型结构 LEVEL 2 研发预训练模型 LEVEL 3 基于模型 SFT LEVEL 4 直接调用 大模型产业生态图 大模型产业链上的生态,根据大模型生态上不同企业的定位,分成了四个等级的企业: • 自研大模型结构的企 6M vs. OpenAI’s $100M+ 投资浪费 业务系统 A 对外出入口 A 应用逻辑 A 算法 算力 适应性差 业务系统 B 对外出入口 B 应用逻辑 B 算法 算力 项目周期长 业务系统 C 对外出入口 C 应用逻辑 C 算法 算力 统一出入口 应用模板( A/B/C… ) 算法池( A/B/C… ) 算力池 大模型时代企业 AI 项目“烟囱式 训练加速 DeepSeek 联 网 助 手 文档问答 知识摘要 • 模型 + 训练平台 + 应用构建 平台 全链路能力。 • 提供从训练——推理——应 用的一站式丝滑服务体验 • 全面接入 deepseek 模型 大模型工具链支持大模型研发至应用全栈技术 算力 计算集群( H20/A10 等) 国产算力适配10 积分 | 28 页 | 5.00 MB | 6 月前3
DeepSeek AI大模型在工程造价上的应用方案1.3 工程造价行业现状..............................................................................11 1.4 应用 DeepSeek-R1 的意义.................................................................12 2. DeepSeek-R1 ......................................................................34 4. DeepSeek-R1 在工程量清单编制中的应用...............................................36 4.1 自动识别与提取工程量数据................................ ......................................................................44 5. DeepSeek-R1 在预算编制与审核中的应用...............................................45 5.1 自动化预算编制流程...................................0 积分 | 138 页 | 252.70 KB | 5 月前3
铁路沿线实景三维AI大模型应用方案2.1.2 建模软件与工具.........................................................................20 2.2 人工智能算法应用..............................................................................22 2.2.1 深度学习模型..... 数据层........................................................................................32 2.3.2 应用层........................................................................................34 2.3.3 展示层 3.3.1 GIS 数据的获取与整合...............................................................55 3.3.2 GIS 在模型中的应用...................................................................58 4. 三维模型构建...................40 积分 | 200 页 | 456.56 KB | 5 月前3
公共安全引入DeepSeek AI大模型视频智能挖掘应用方案7.3 故障处理与支持................................................................................112 8. 应用案例分析...........................................................................................114 大模型能够实现对大量影像数据的实时处理和决策支 持,为公共安全管理提供强有力的支持。这一方案不仅可以提升处 理速度,还能减少人为因素的干扰,提高事件识别和响应的准确 性。 在这一背景下,建立一套基于 AI 大模型的视频智能挖掘应用 方案显得尤为重要。该方案主要包括以下几个关键环节: 1. 数据采集与预处理:利用现有的智能视频监控设备,实时收集 各类场景的视频数据,并进行格式转换、降噪、分割等预处 理,确保数据的质量和可用性。 全,遵循相关法 律法规,建立完善的用户身份认证与数据保护机制。同时,随着技 术的进步与不断演化,定期对模型进行更新与迭代,保持其高效性 与准确性。 整体来看,基于 AI 大模型的视频智能挖掘应用方案,为提升 公共安全管理能力提供了新思路和切实可行的方案,通过智能化手 段有效应对日益复杂的安全挑战,为建设更安全、更和谐的社会环 境奠定了基础。 1.1 背景介绍 随着社会的发展和城市化进程的加快,公共安全问题日益突0 积分 | 144 页 | 318.04 KB | 3 月前3
基于大语言模型技术的智慧应急应用:知识管理与应急大脑的出现,以及 2022 年第四代生成式预训练模型(gen⁃ erative pre-trained transformer,GPT),人工智能领域 自然语言处理方向的重大突破,引领了大规模预训 练模型及应用研究的热潮。大语言模型技术的迅猛 进展正深刻地影响着机器系统智能化的轨迹,标志 着进入一个新的人工智能时代。从 BERT 到 GPT [1-2], 这些模型通过深度学习和海量数据训练,不仅推动了 自 金(20BZZ037), 广 东 省 哲 学 社 会 科 学 规 划 项 目 (GD24XGL075)资助 *通信作者简介 黄欢(1976— ), 男, 湖南常德人, 硕士, 助理研究员。 基于大语言模型技术的智慧应急应用: 知识管理与应急大脑 龚 晶 1 黄 欢 2,* (1. 暨南大学 公共管理学院/应急管理学院,广州 510632;2. 暨南大学 党委政治保卫部/人民武装部,广州 510632) Applications 在应急管理信息化建设中的应用,针对智慧应急中面临的建设困境以及业务系 统智能化水平的局限,提出了基于大语言模型技术重构智慧应急的知识管理模式,在此基础上构想能够协同创新、全域感知、 决策支持的应急大脑,从而实现整体业务系统智能化水平从感知智能到认知智能的提升。 关键词 大语言模型,智慧应急,知识管理,应急大脑 引用格式 龚晶,黄欢. 基于大语言模型技术的智慧应急应用:知识管理与应急大脑 [J]20 积分 | 8 页 | 3.21 MB | 1 天前3
共 39 条
- 1
- 2
- 3
- 4
