基于大模型的具身智能系统综述得益于近期具有世界知识的大规模预训练模型的迅速发展, 基于大模型的具身智能在各类任务中取得了良好的 效果, 展现出强大的泛化能力与在各领域内广阔的应用前景. 鉴于此, 对基于大模型的具身智能的工作进行了综述, 首先, 介绍大模型在具身智能系统中起到的感知与理解作用; 其次, 对大模型在具身智能中参与的需求级、任务级、规划级和动作 级的控制进行了较为全面的总结; 然后, 对不同具身智能系统架构进行介绍 而如何利用目前飞速发展的计算能力与人工智能 (Artificial intelligence, AI) 技术提高具身智能的表 现则成为学界与产业界的关注重点. 最近的研究表 明, 通过扩大语言模型的规模, 可以显著提高其在 少样本学习任务上的表现, 以 GPT-3 (Generative pre-trained transformer 3)[4] 为代表的大语言模型 (Large language model, LLM) 在没有进行任何参 数更新或微调的情况下, 仅通过文本交互来指定任 务和少样本示例就能很好地完成各类任务. 在此之 后, 具有优秀泛化能力与丰富常识的基础模型在计 算机视觉、自然语言处理等领域都展现出令人瞩目 的效果. GPT-4[5]、LLaMA[6]、LLaMA2[7]、Gemini[8]、 Gemini1.5[9] 等大语言模型能与人类进行流畅的对 话, 进行推理任务, 甚至进行诗歌和故事的创作; BLIP (Bootstrapping20 积分 | 19 页 | 10.74 MB | 2 天前3
信息服务-AI Agent(智能体):从技术概念到场景落地概念又被重 新拾起。大模型成为了智能体目前最完美的载体,有望完成从概念到实际应用的 蜕变。用户在 Agent(智能体)模式中给 AI 设臵目标和身份,并提供 Prompt(提 示词)。AI 自主拆分任务、使用工具、完成工作,用户仅负责设立目标、提供工具 资源和监督结果。 赋能两类实体领域,成本与效益的博弈:AI Agent 目前的应用大多都在概念层面, 但随着大模型竞争加快、政策鼓励研发投入、更多企业参与 智能体将从概念走向实际应用,成为各行业的重要助力。通过多模态大模型,智 能体能够整合图片、语音等异构数据,提高任务处理效率,并解决跨行业、跨领 域的问题。技术方面,智能体具备长期和短期记忆、自主规划、工具使用和自动 执行任务的能力。这些能力不仅能提高工作效率,还能为用户提供更好的体验。 单智能体通过试错学习适用于简单任务,而多智能体则在复杂环境中通过合作或 竞争调整最佳策略。当前,智能体主要应用在自动化和情感需求等领域,但商业 解锁科技树的成功率(蓝色是 GITM) ............................................................. 27 图 43 各模型完成任务成功率对比 .............................................................................. 27 图 44 豆包智能体的对话界面10 积分 | 33 页 | 4.71 MB | 2 天前3
AI知识库数据处理及AI大模型训练设计方案(204页 WORD)关系抽取准确率达到 90% 以上 - 知识 图谱覆盖率达到 80%以上 再次,设计并训练一个具备强泛化能力的 AI 大模型。基于处 理后的数据,采用预训练-微调的技术路线,训练一个能够适应多 场景任务的 AI 模型。模型的训练过程将注重优化参数效率和数据 利用率,确保模型在有限资源下仍能保持高性能。模型训练的关键 目标包括: - 模型参数量控制在 100 亿以内 - 训练时间不超过 30 性和代表性。数据处理阶段将采用自动化工具与人工审核相结合的 方式,以确保数据质量。在 AI 模型训练方面,项目将采用深度学 习技术,包括预训练模型(如 BERT、GPT 等)的微调,并结合迁 移学习、多任务学习等策略,提升模型的泛化能力和应用效果。此 外,项目还将设计并实现一套高效的计算资源调度系统,以支持大 规模分布式训练,确保模型训练的效率和稳定性。项目的最终目标 是为企业或研究机构提供一套完整的知识库与 重复数据、纠正明显的错误、填补缺失值以及统一数据格式。例 如,对于日期格式不一致的情况,需将其统一为 ISO 8601 标准格 式。同时,对于文本数据,需进行分词、去除停用词、统一大小写 等处理,为后续的自然语言处理任务奠定基础。 在数据清洗的基础上,需进行数据标注和分类。对于结构化和 半结构化数据,可采用自动化工具进行标注,如使用正则表达式匹 配特定模式。对于非结构化数据,尤其是文本数据,需借助人工标 注60 积分 | 220 页 | 760.93 KB | 4 月前3
AI大模型人工智能数据训练考评系统建设方案(151页 WORD)1 项目组织结构..................................................................................118 10.2 任务分解与进度安排......................................................................120 10.3 资源分配与预算..... 设计的基础和关键。首先,系统需要支持多维度数据采集与处理功 能,确保能够覆盖各类人工智能模型的训练数据需求。数据采集范 围包括但不限于图像、文本、语音等多种数据类型,且系统需具备 高效的数据清洗、标注和预处理能力,以满足不同训练任务的需 求。数据处理过程中,系统应支持自动化工具和人工干预相结合的 方式,确保数据质量的同时提升处理效率。 其次,系统需具备强大的模型训练支持功能。这包括对多种主 流深度学习框架(如 TensorFlow、PyTorch 备以下核心功能以满足用户的实际需求: 1. 用户管理 o 系统应支持多角色用户管理,包括管理员、培训师、学 员等,不同角色对应不同的权限和功能模块。例如,管 理员可进行用户信息的增删改查,培训师可发布和管理 考评任务,学员可参与考评并查看结果。 o 提供用户注册、登录、身份验证功能,支持第三方平台 (如微信、企业微信)的快速登录。 2. 数据管理与上传 o 系统需支持多种格式的数据上传功能,包括但不限于文60 积分 | 158 页 | 395.23 KB | 4 月前3
DeepSeek智能体开发通用方案从而提升企业的运营 效率与决策质量。 项目的核心目标是通过模块化设计和可配置策略,为企业提供 定制化的智能体开发服务。智能体将具备自主学习能力,能够根据 业务需求动态调整其行为模式,并支持多任务并行处理。此外,方 案特别注重系统的可扩展性和兼容性,确保智能体能够无缝集成到 现有的企业信息化系统中,降低实施成本。 在技术架构方面,DeepSeek 智能体开发通用方案采用分层设 计,主 为确保知识传递与技能提升,团队内部建立了完善的培训机 制。每月组织两次技术分享会,内容涵盖最新技术动态、项目经验 总结等。同时,与外部科研机构建立了长期合作关系,定期邀请专 家进行技术指导。 团队采用敏捷看板进行任务管理,使用 GitLab 进行代码版本 控制,通过 Jira 进行缺陷跟踪,确保开发过程的透明度和可控性。 为提升协作效率,团队配置了专业的开发环境,包括高性能计算集 群、数据存储系统及测试平台。每个成员都配备了符合开发要求的 此外,用户体验需求是智能体能否成功落地的关键因素。需要 明确用户界面的设计原则、交互方式以及反馈机制。例如,在对话 式智能体中,需确保对话流自然流畅,用户输入的容错性较高,同 时提供清晰的反馈以引导用户完成任务。用户体验的优化不仅依赖 于技术实现,还需要通过用户测试和反馈不断迭代改进。 最后,技术约束和资源限制也是需求分析的重要内容。开发团 队需评估现有技术栈、硬件资源以及开发周期的限制,确保项目在0 积分 | 159 页 | 444.65 KB | 3 月前3
从大模型、智能体到复杂AI应用系统的构建(61页 PPT)自动生成开放的文本、图像、音频、视频等内容 短视频片段 广告视频 多模态生成 相对通用的人工智能 一个大模型解决多个问题 自适应地应对复杂外界环境的挑战 专用人工智能 一事一模型,每个模型完成特定智能任务 解决特定的智能问题 里程碑: ChatGPT 的成 功 AI 1.0 时代 AI 2.0 时代 图像分类 文本分类 信用评估 房价预测 销量预测 客户分群 新闻聚类 广告定向 language-understanding-on-mmlu 大模型在知识问答、数学、 编程等能力上达到新的高度, 多种任务上 的表现超过人类水平。 大模型能力不断增长 Source: https://lifearchitect.ai/timeline/ 大模型发展迅速,参数量从百亿到万亿规模 大模型能力涌现,多个任务上性能超越人类水平 1000 Billion Apple 提出 LLM 并非真正的推理系统 怀疑论 2023-2024 年,推理能力突破性进展: • OpenAI o1/o3 在数学和代码推理任务上的卓越表现 • 开源大模型 DeepSeek-R1 在 MATH 基准上达到 87.2% 的准确率 横空出世: OpenAI o1/o3 、 DeepSeek- R1 等 o120 积分 | 61 页 | 13.10 MB | 2 天前3
智能对话系统中的个性化(31页PPT-吾来)2013-2015 :百度资深架构 师 . 2015 至今:来也联合创始人 &CTO 个人简介 胡—川 让每个人拥有助理 六百万用户正在使用的对话式在线个人助理服务 • 理解 - 交互 - 咨询 - 任务完成,实现交易闭环 • 日均需求会话数超百万, AI 交互占比 98% • 对接超过 150 个服务商,日程 AI 准确率 99% • 主动交互 DAU 及新增用户数维持高速自增长 领先的企业智能助理 机器人回复来自特定领域的知识 库 . 以准确率为评估指标 . 用户希望完成特定的任务 . 机器人通过多轮对话满足用户需 求 . 以需求完成率为评估指标 . 用户没有明确目的 . 机器人也没有标准答案 . 以相关性、趣味性为评估指标 任务型对话 闲聊 问答型对话 帮我订张机票 我好无聊啊 什么是人工智能? s 种不同的对话类 型 存在检索召回问题 • 基于句向量的语义检索能实现在全量数据上的高效搜索, 从 而解决传统检索的召回问题 • 实际系统中会根据具体情况选择不同的方案 问答型对话技术小结 任务型对话 . 用户希望完成特定的任务 . 机器人通过多轮对话满足用户需求 . 以需求完成率为评估指标 帮我订张机票 . 用户希望得到特定问题的答案 . 机器人回复来自特定领域的知识10 积分 | 31 页 | 1.24 MB | 2 天前3
审计领域接入DeepSeek AI大模型构建Agent智能体提效设计方案(204页 WORD)革的可能。通过机器学习、自然语言处理和大数据分析等技术的结 合,人工智能能够显著提升审计效率、准确性和覆盖范围。在传统 审计流程中,约 60%的工作时间耗费在数据整理、异常识别和底稿 编制等重复性任务上,而人工智能的引入可将这部分工作的处理速 度提升 3-5 倍,同时将人为错误率降低至传统方法的 1/3 以下。 具体而言,人工智能在审计领域的应用主要体现在三个维度: 首先是自动化数据采集与清洗,通过智能体对接财务系统、银行对 构建智能体提效方案的核心目标是通过深度集成 DeepSeek 的 先进 AI 能力,解决审计行业在效率、精度和合规性方面的关键痛 点。具体而言,方案需实现以下多维度的突破: 效率提升 通过自动化处理重复性高、规则明确的任务,将审计人员从繁琐的 基础工作中解放。例如,智能体可实现: - 凭证扫描与数据录入自 动化,处理速度提升 5-8 倍 - 交易流水异常检测响应时间缩短至分 钟级 - 报告初稿生成效率提高 推理服务 器,支持每秒处理 20+并发查询,平均响应时间控制在 800ms 以 内。 关键审计判断逻辑采用混合决策机制: 1. 结构化数据规则引 擎:处理税率计算、勾稽关系校验等确定性任务 2. 深度学习模 型:处理关联方识别、异常交易检测等非结构化问题 3. 专家系 统:对重大风险事项启动预设审计程序链 应用层构建审计工作台界面,集成三大核心功能:智能抽样模 块采用分层贝叶斯方法,在10 积分 | 212 页 | 1.52 MB | 2 天前3
AI大模型人工智能行业大模型SaaS平台设计方案7.1.1 各阶段里程碑...........................................................................134 7.1.2 关键任务分配...........................................................................138 7.2 资源规划......... 可实现自 然语言处理、图像识别等各类应用。 其次,本文将探讨如何在平台设计中融入安全性、可扩展性与 用户体验等关键要素。在当今数据隐私愈发被重视的情况下,确保 用户数据的安全是平台设计的首要任务。此外,为了适应不断变化 的市场需求,平台的可扩展性也至关重要,它能够支持未来更多的 模型和新技术的集成。同时,友好的用户体验是吸引和留住用户的 必备条件。 最后,本文将通过实际案例、市场调查结果以及定量分析,插 应用层则是具体实现业务逻辑的核心部分,主要包含 AI 模型 的调用与管理、用户权限控制和报表生成功能。其设计要点包括: 模型管理:支持多种 AI 大模型的上传、下载、更新和版本控 制。 任务调度:提供任务管理机制,能对用户请求进行调度和执 行。 权限管理:确保不同用户在系统中具备不同的操作权限。 服务层则是承载业务逻辑和 AI 模型的运行环境,核心是微服 务架构。此层主要组件包括:50 积分 | 177 页 | 391.26 KB | 5 月前3
实现自主智能供应链:2035年企业竞争的新高地透明度。若缺乏端到端的可视性,即使是最先进 的AI系统也难以创造真正的价值。对于诸如自主 化AI(agentic AI)这类新兴系统而言,这一点尤为 关键,因为它们并非简单遵循固定指令,而是需要 统筹协调复杂的任务流程。 其二,简化流程。那些善于精简运营、标准化 流程的企业,将能更快地规模化应用技术,更迅 速地适应变革,并加速AI的学习周期。在当今的市 场格局中,这些无疑是一种核心的竞争优势。 我们对全球1000名企业高管的调研进一步 企业期望达到高级自主化,即由系统处理绝大多 数运营决策。 那么,这对企业员工而言意味着什么?我们 的研究表明,在自主智能供应链的生态系统中, 人力依然是核心要素。事实上,最高效的自主智� 供应链体系将实现人员角色转型⸺从任务执行 者转变为系统决策的指导者与监督者。我们观察 到,这一转变正通过“人机协作”的渐进式发展 在企业中逐步实现,每个阶段都推动着效益提升。 此外,通过将资深团队成员数十年积累的专 业知识和洞察进行系统化梳理与编码标准化,自 例,它能自动保持设定速度,但仍需人工干预转 向和刹车。 相较之下,自主化系统虽包含一定程度的自 动化,但其内涵远不止于此。它们由自主化AI驱 动,可在无需人工干预的情况下自主决策并执 行任务。例如,已在部分城市投入使用的全自动 驾驶汽车,具备自主驾驶能力,并能完全掌控车 辆,几乎不需要驾驶员介入。 8 实现自主智能供应链 实现自主智能供应链 9 The journey towards0 积分 | 28 页 | 2.74 MB | 3 月前3
共 35 条
- 1
- 2
- 3
- 4
