2024数字化、去中心化临床试验行业发展现状调研分析报告-52页Technical guidance for the design of patient- focused clinical trials (Trial version) [以患者为中心 的药物临床试验设计技术指导原则(试行)]. Center for Drug Evaluation, NMPA. https://www.cde.org.cn/main/news/viewInfoComm Technical guidance for the implementation of patient-focused clinical trials (Trial version) [以患 者为中心的药物临床试验实施技术指导原则(试 行)]. Center for Drug Evaluation, NMPA. https://www.cde.org.cn/main/news/viewInfoComm 73949142380bd (accessed February 2025). • Center for Drug Evaluation, NMPA. (2024). 在罕见 疾病药物临床研发中应用去中心化临床试验的技术 指导原则 [Technical guidance for the application of decentralized clinical trials in rare disease10 积分 | 50 页 | 10.88 MB | 5 月前3
从DEEPSEEK的崛起看AI医疗发展方向及投资机会预测和评估。企业端可明显降低成本,但商业化落地进度较慢。合作模式和医院正在探索中。整体数据获取成本低,基因测序一次能获取较 大量基因组数据。相关标的:华大智造、贝瑞基因、华大基因。 AI 医疗信息化CDSS辅助临床决策:优化电子病历质控、临床决策支持与智能分诊流程, AIGC大幅拉升效率。包括AI辅助报告解读、推荐检 查项目、疾病预测等。整体商业化落地较快,数据获取成本较高。相关标的:迈瑞医疗、创业慧康、金域医学、朗玛信息、润达医疗、医渡 AI 制药:缩短药物研发周期,助力靶点发现及临床疗效预测。1)逐渐完善的行业拼图,行业玩家逐渐增加;2)AI在多疾病领域广泛应用 ,肿瘤(37%)、免疫学(21%)及神经病学(14%)领域占比最大;3)AI可参与药物开发过程多个阶段。其中涉及AI虚拟筛选、药物发 现、优化药物结构、临床试验优化、建立疾病风险模型、肿瘤精准治疗等。商业化落地中等,仍处于临床早期阶段,数据获取成本高,依赖 文献数据及实 01 AI 医学影 像辅助诊断 AI 基因测序 AI 医疗信息化 CDSS辅助临床决策 AI 制药 AI 健康管理 AI 手术机器人 05 02 03 04 06 3 01 AI 医学影像辅 助诊断 AI 基因测序 02 AI 医疗信息化 辅助临床决策 03 AI 健康管理 04 AI 制药 05 AI 手术机器人10 积分 | 62 页 | 6.64 MB | 5 月前3
制药篇:大鹏一日同风起,AI医疗启新篇◼ 药物研发周期长、资金投入高、成功率低,“AI+”方案有望解决痛点。一款新药成功上市销售大约需要花费十年以上的时间,药物发现阶 段从靶点到苗头化合物再到先导化合物优化过程,整体成功率为51%,临床研究阶段的整体成功率仅为12.9%。资金花费上,一款药物从研发 到上市销售,平均需要投入8-23亿美元,上市后还要投入超过3亿美元。与传统药物研发对比,AI制药更具有优势:AI制药方法可以对数十 验证和测试时间。 ◼ AI研发的药物逐步进入临床阶段,且药物类型多样。尽管当前暂时没有利用AI制药技术研发的药物成功获批上市,但通过公开的数据库检索, 2015年-2023年累计有75个分子应用AI制药技术开发并进入临床研究,2023年有67条管线处于临床研究阶段,其中45条管线处于临床I期研究, 19条管线处于临床II期研究,2条管线处于临床III期阶段。对AI制药开发的分子类型统计发现, 2023年AI技术在小分子药物的发现中应用较 多,67项临床研究中22项为小分子药物发现、4项为抗体发现、6项为疫苗发现。 ◼ 投资建议:关注AI制药领域进展及具备潜力的海内外前沿公司。以“AI+CRO”、“AI+Biotech”为典型的商业模式,AI制药涌现出了一批优 秀的上市/非上市公司。除此之外,以赛诺菲、GSK、强生为代表的大药企亦在积极布局AI制药领域,一方面运用AI技术加强数据管理决策并0 积分 | 31 页 | 2.98 MB | 5 月前3
“AI+医药健康”系列报告(三):AI制药蓝海,人工智能助力新药开发全流程个人三大方向。在“AI+医药健康”系列报告(一)和(二) 中,我们重点分析了 AI To 院内和 AI To 个人两大应用方向。本篇报告重点聚 焦 AI 在制药行业的应用,全面介绍了 AI 在临床前和临床阶段的落地情况;同 时作为一种新的药物研发模式,我们基于全球 AI 制药龙头 Schrödinger,重点 讨论 AI 制药的商业模式变迁,并梳理相关公司。 ❑ AI 可用于新药开发全过 11 个月,总费用从 4.14 亿美元降低至 20 万美元,极大降低了新 药研发负担。目前人工智能技术在药物研发过程中的应用主要集中于药物发 现阶段,随着 Deepseek 等大模型技术应用,AI 在临床阶段的应用价值也将 逐渐得到体现。 ❑ 全球 AI 制药行业投融资活跃,MNC 参与达成多项重磅交易。虽然 2023 年全 球资本市场景气度有所下降,但 AI 制药行业融资活跃度仍然保持高位。2024 图 9:AI 制药临床管线适应症分布 ..................................................................... 7 图 10:AI 在药物开发各个阶段的应用占比 ........................................................ 8 图 11:AI 在临床研究阶段的应用价值更高10 积分 | 17 页 | 2.22 MB | 5 月前3
AI医疗专题:从AIGC角度看医药产业图谱 AI 医疗器械:AI促进医疗器械创新,降本增效成果显著。 1) AI 医疗影像:进入发展快车道,辅助诊断为主 2) AI 医疗机器人:手术、辅助、康复机器人皆具备较高临床价值 3) CDSS与病种质控:临床决策支持服务以人机交互为核心 , AIGC拉升效率 4) AI 健康管理:智能设备监测及分析个人数据,医疗科技乘风而起 AI 制药:当前国内外AI制药行业的主要玩家主 器人皆具备较高临床价值 CDSS与病种质控:临床决策支持服 务以人机交互为核心 , AIGC拉升效率 AI 健康管理:智能设备监测及分析个 人数据,医疗科技乘风而起 9 AI 医疗器械常见应用及相关公司 1. AI 医疗影像:进入发展快车道,辅助诊断为主 2. AI 医疗机器人:手术、辅助、康复机器人皆具备较 高临床价值 3. CDSS与病种质控:临床决策支持服务以人机交互 《关于促进“互联网+医疗健康”发展的意见》 推进人工智能与互联网相结合,利用人工智能技术和医疗健康智能设备,开展移动医疗示范,实现个人健康实时监测、评估、疾病预警、慢性 病筛查和主动干预。强化临床、科研数据的整合、共享和应用,支持医疗健康相关的人工智能技术、医用机器人、大型医疗设备、应急救援医 疗设备、生物三维打印技术和可穿戴设备等的研发。计划到2025年,在智能医疗等领域广泛应用新一代人工智能技术。10 积分 | 50 页 | 5.74 MB | 5 月前3
生成式AI爆发:医疗人工智能走到新的十字路口-蛋壳研究院........................................................................................ 24 2.3.2 临床变化................................................................................................. ......................................................24 图表 19 2023 年 10 月 31 日—2024 年 9 月 1 日更新了临床情况的管线............. 25 图表 20 39 家主流制药 AI 公司停止或被撤下的管线.............................................. 布的《山东省医养健康产业发展规划(2023—2027 年)》,便提出促进人工智能推广 应用,推进医学人工智能数据及推理运算场景、智慧医疗图脑、医疗可穿戴、医疗终端 边缘计算、神经芯片及脑机智能接口等推广应用,强调要积极开展临床决策支持系统、 医学影像辅助诊断、医用机器人、疾病风险预测与诊断等项目。 确立方针后,我国又在微观层面密集出台了《关于进一步推进以电子病历为核心的医疗 机构信息化建设工作的通知》《关于印发医院智慧服务分级评估标准体系(试行)的通10 积分 | 69 页 | 13.45 MB | 5 月前3
生成式AI爆发:医疗人工智能走到新的十字路口-蛋壳研究院........................................................................................ 24 2.3.2 临床变化................................................................................................. ......................................................24 图表 19 2023 年 10 月 31 日—2024 年 9 月 1 日更新了临床情况的管线............. 25 图表 20 39 家主流制药 AI 公司停止或被撤下的管线.............................................. 布的《山东省医养健康产业发展规划(2023—2027 年)》,便提出促进人工智能推广 应用,推进医学人工智能数据及推理运算场景、智慧医疗图脑、医疗可穿戴、医疗终端 边缘计算、神经芯片及脑机智能接口等推广应用,强调要积极开展临床决策支持系统、 医学影像辅助诊断、医用机器人、疾病风险预测与诊断等项目。 确立方针后,我国又在微观层面密集出台了《关于进一步推进以电子病历为核心的医疗 机构信息化建设工作的通知》《关于印发医院智慧服务分级评估标准体系(试行)的通10 积分 | 69 页 | 13.45 MB | 5 月前3
以数据治理为抓手的智慧医院建设思路分享在患者的角度来评判医院信息化的发展,考察‘互联 网+医疗’服务在医院的应用情况,从医院端规范供 应商产品功能,指导产业良性发展。” 智慧医院评级 智慧医院要做三个评级: l 一是服务于临床医护人员的智慧医疗评级,以电子病历评级为核心的临床业 务标准; l 二是刚刚出台的智慧医疗服务的五级标准评级,是针对医院互联网端便民惠 民服务的分级指导和评价标准,考察的是针对患者端的智能服务的患者服务 标准; l 实时可控 电子病历 管理高效 业务有序 实时可控 门诊病历 管理高效 业务有序 实时可控 集成视图 建设效果展示| 住院医生站 管理高效 业务有序 实时可控 建设效果| 智慧临床 一体化住院医生工作站 辅助查询 管理高效 业务有序 实时可控 住院护士工作站 床位图 护士工作站 管理高效 业务有序 实时可控 住院护士工作站 管理高效 业务有序 实时可控 住院护士工作站 不良事件平台 护士工作站 管理高效 业务有序 实时可控 急诊护士工作站 预检分级 护士工作站 完整的信息 临床医学术语不统一 李克强总理主持召开经济发展和民生改善座谈会 2016年11月14日,李克强总理主持的座谈会上, 当北京医院院长曾益新介绍目前医保信息化标准还任 重道远,阑尾炎和盲肠炎的各个医院的名称还不统一10 积分 | 72 页 | 19.10 MB | 6 月前3
大模型平民化开启“AI+医疗”新纪元-国联民生证券C端自我管理:C端患者运用AI工具管理自己的健康,如慢病管理、个性化用药、健康数据追踪等; • B2C远程管理:C端患者和B端医疗机构脱离线下场景,实现远程互动,如远程影像、远程病理等; • B2C临床管理:AI赋能B端医疗机构的临床决策,如AI医生、院内大模型等; • B端自我管理:B端医疗机构利用AI工具提高内部运营效率,如电子病历、HIS系统、病床管理、供应链管理等。 ➢ 投资建议: ➢ 硬件+AI: 风险提示:技术升级迭代不及预期、商业化进程不及预期、行业竞争加剧风险。 目 录 第一部分 第二部分 第三部分 第四部分 第五部分 第六部分 “医疗+AI”复盘及全景图 C端自我管理 B2C远程管理 B2C临床管理 B端自我管理 投资建议 1 “医疗+AI”复盘及全景图 AI&医疗复盘 本轮AI行情的中美差异: ➢ 起点一致:本轮AI行情的起步都是从2023年一季度开始的,标志性事件是以Ope 产业发展阶段不同:美国部分医疗AI相关产业相对比较成熟,在AI出来之前便有一定的基础(算法等),AI进一步赋能产业;国内基础 相对比较薄弱。 ➢ 医疗卫生体制差异:美国医疗AI是偏严肃医疗的概念,管理模式类似于处方药,需要做临床试验、FDA审批,并可以医保报销。中国部 分医疗AI产品偏消费医疗的概念,跟公立医院的体系定位有差异。 图:TDOC的股价走势 图:HIMS的股价走势 -200% -100% 0% 100%10 积分 | 85 页 | 5.92 MB | 5 月前3
德勤:2025年中国智慧医疗行业白皮书03 27.9% 在此类趋势下,具有便捷性、高效性、精准性等特点的智慧医疗得以快速发展,在提高全产业链的效率的同时提供 更具多样化的医疗服务选择。现阶段,智慧医疗的发展在政策法规、资金支持、新临床需求和新兴技术等方面皆有 所体现。 为了提升医疗服务的可及性和公平性,国家陆续出台了 多个阶段性政策,推动医疗信息化的转型升级。根据政 府各时期发布的政策来看,我们可将智慧医疗发展分为 三个阶段,从院内管理信息化到医疗数据信息化,再到 2021年6月,浙江省发改委发布《浙江省医疗服务体系暨医疗机构设置“十四五”规划》,建设智慧互联的 卫生健康服务体系和监管体系。2021年,由阿里健康、熙牛医疗共同打造的“未来医院”信息系统在浙大一 院上线。至此,浙大一院旗下四个临床院区核心信息系统全部搬迁上“云”,各院区信息壁垒逐一打破,实 现患者档案的统一和电子病历信息共享,在提升医生诊疗效率的同时,不同院区医疗资源也能够灵活调配。 2022年8月,江苏省卫健委宣布在“十 苏上线“临床检验云”平台,互认项目涵 盖178项。2025年9月底前,包括所有基层医疗卫生机构在内的全省近2000家公立医疗机构将全部接入。 2024年5月,北京市人民政府发布《北京市加快医药健康协同创新行动计划(2024-2026年)》,明确提出 支持医疗大模型的开发与落地应用。2025年,北京儿童医院、百川智能、小儿方健康科技联合打造“AI儿科 医生”,整合300多位知名儿科专家临床经验和数20 积分 | 28 页 | 2.12 MB | 4 月前3
共 105 条
- 1
- 2
- 3
- 4
- 5
- 6
- 11
