智能金融:AI驱动的金融变革(45页 PPT)意距离的依赖关系。 并行计算能力强: Transformer 架构支持并行计 算, 训练速度更快。 • 缺点:资源消耗大 上下文学习、指令微调、 扩展规律 (GPT3 、 GPT4…) 自然语言处理模型的演进 预训练语言模 型( PLM ) “ 预训练 - 微调” 学习范式 ( BERT、 GPT) 大语言模型 ( LLM ) 注意力 Attention 自注意力机制:使序列中的每个单词都能 Richard Sutton (强化学习之父 ,阿尔 伯塔大学 教授, DeepMind 科学家) 折扣因子 监督微调 强化学习 图源自《 ReFT: Reasoning with Reinforced Fine-Tuning 》 DeepSeek-R1 :监督微调 + 强化学习训练 高探索自由度 = 推理能力自我觉醒 (规则奖励 + 奖励模型) 纯强化学习训练 多阶段增强训练 R1-Zero 生成的 长思维链数据 综合性能 更强 R1 蒸馏 版 1.5B~32B 对 V3 模 型 监督 微调 混合数据 监督微调 60 万条 推理数据 模型蒸馏是一种将大型复杂模型(教师模型)的知识迁移到小型高效模型(学生模型)的模型压缩技术 ,其 核心目标是在保持模型性能的同时 ,显著降低模型的计算复杂度和存储需求20 积分 | 45 页 | 4.10 MB | 1 天前3
政务大模型通用技术与应用支撑能力要求........ 1 3.4 大模型服务 large-scale model service ........................................... 2 3.5 微调 fine-tuning ............................................................... 2 3.6 提示词 prompt .... 1—2025,3.2] 3.5 微调 fine-tuning 为提升机器学习模型预测准确性,使用专门领域数据在大模型上继续训练的过程。 注1:专门领域数据一般是特定场景的生产数据或合成数据。 注2:常用的微调方法包括提示词微调、全参微调、参数高效微调等。 [来源:GB/T41867—2022,3.2. 31,有修改] 3.6 提示词 prompt 提示语 使用大模型进行微调或下游任务处理时,插入到输入样本中的指令或信息对象。 b) 应支持多种数据类型,支持excel、txt、json等多种格式数据导入,以及支持结构化数据、非 结构化文本、音视频等多模态数据接入,提供数据去重工具。 6.2.1.2 数据标注 a) 应支持微调语料标注能力,即对已有大规模通用语料库进行精细化标注,以满足特定任务或领 域的需求。标注结果应具备一致性和可靠性,遵循相应的标注规范; b) 应支持对齐语料标注能力,具备将不同来源、不同结构的文本进行整合和对齐的能力,形成一5 积分 | 23 页 | 500.64 KB | 1 天前3
大模型技术深度赋能保险行业白皮书151页(2024)· · 107 企微运维机器人· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 108 华农保险大模型微调效果· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 111 众安AIGC中台-众有灵犀· · · · · · · · · · /开源数据集、企业自有数据以及AI 合成数据。大模型训练和微调所需数据量快速增长,真实世界数据将在数年内被用尽。研 究机构Epoch估计,机器学习可能会在2026年前耗尽所有“高质量语言数据”。据Gartner 预测,2024年用于训练AI的数据中有60%将是合成数据。以Meta今年7月发布的 LLaMA3.1模型为例,监督微调环节的数据里有相当比例是合成数据,使用合成数据确实 带来了模型效果的提升。 带来了模型效果的提升。 (1)合成数据成有力补充 高质量的真实数据已逐渐无法满足大模型训练与精细微调的需要,这促使合成数据 作为真实数据的重要补充,在人工智能领域扮演着日益关键的角色。合成数据作为算法、 生成模型及模拟技术的产物,能够模仿现实世界数据的特征与模式,为大模型的训练与优 化提供丰富的数据资源。 以AlphaGeometry项目为例,该项目通过生成高达一亿个精准合成的数据点,为解决20 积分 | 151 页 | 15.03 MB | 1 天前3
2025年智能之光:⼈机协作的经济管理研究新时代报告-北京大学中国经济研究中心均指代大语言模型。 2 人工智能时代的社会科学家 5 对于需要大规模文本分析的应用,则需要通过 API 访问;如果有进一步的保密需求,则需要考虑本地部署。 随着相关计算框架的成熟,本地部署大模型、微调大模型已经不是高科技公司的专利,而是每一个社会科学研 究者都能运用的工具。 在介绍完这些技术基础之后,我们分别介绍大模型在研究全过程中的应用。我们认为,人工智能大模型在 研究过程中将会扮演四种 Transformer 模型建构,并发展了 “预训练-微调”范式。所谓“预训练——微调”范式,就是指先在大量一般的文本上对语言模型进行训练,然 后在进行具体任务时,再利用少量数据进行微调。例如,在金融文本情绪分析当中,可以首先利用大量网络文 本数据,训练模型对于语言的一般理解;再利用少量领域数据(如 1000 条标注后的金融新闻标题)对模型参 数进行微调(Fine-tune)。在经济金融研究中,可以利用事先训练好的 利用事先训练好的 BERT 模型,在具体应用中进行微调, 实现对特定任务预测性能的改进。例如Siano (2025) 利用新闻公告文本作为自变量、公告后收益数据作为因变 量,微调了 BERT 模型。Huang et al. (2023) 则进一步针对金融和会计领域训练了 FinBERT 模型。 2020 年,Google 进一步推出了 T5 模型。这一模型的关键意义,在于通过“指令 + 数据”的形式实现了0 积分 | 62 页 | 2.45 MB | 1 天前3
金融银行业务接入DeepSeek AI大模型智能体建设方案(304页 WORD).......................................................................................61 4.2.1 模型微调模块................................................................................63 4.2.2 业务逻辑集成模块 ..................................87 6. 模型微调与优化...............................................................................................89 6.1 领域适配微调........................................... .....93 6.1.1 金融术语与业务规则注入............................................................95 6.1.2 场景化微调(如信贷审批、投资建议).....................................97 6.2 性能优化策略....................................10 积分 | 313 页 | 3.03 MB | 1 天前3
人工智能赋能医院智慧实验室的建设方案(50页 PPT)问问同检”应用方案的选择 当前常见的大模型应用方案主要包括大模型直答、大模型微调和 RAG ( 检索增强生成 ) 。 大模型直答虽成本低,但幻觉现象严重,缺乏领域知识与实时信息,且可溯源性较差。微调方案通过 优化模型获取领域知识,减少部分幻觉问题,但仍无法动态更新数据,且训练成本较高。 大模型 应用方案 大模型直答 问题 LLM 回答 问题 大模型微调 LLM + 领域知识 回答 RAG( 检索增强生成 问题 + 检索知识 LLM 回答 大模型直答 大模型微调 RAG ( 检索增强生成 ) 外在幻觉 多 中 少 领域知识 无 有 有 实时信息 无 无 有 可溯源 无 无 有 成本 低 高 低 RAG 方案则通过检索外部知识库,将外部知识作 为 生成内容的基础,从而大幅降低幻觉现象的发生。与仅 依赖模型记忆的直答和微调方案不同, RAG 方案具备 动态接入外部知识库的能力,在应对领域性问题和实时 【核心机制】基于岗位需求与人力资源的 " 动态平衡法 则 " 临床资源精准匹配 医疗质量安全强化 人员发展需求适配 【系统价值】通过人工智能持续优化,实现三大核心目标: 构建排班决策智能数据中枢、自动排班、人工微调 【智能排班】 NEXT- 基于大语言模型的质量指标总结 质量指标总结 NEXT- 基于大语言模型的员工考核系统 未经专业训练的大语言模型 AI 技术在检验医学中落地的挑 战 通用大模型(如30 积分 | 50 页 | 31.76 MB | 1 天前3
审计领域接入DeepSeek AI大模型构建Agent智能体提效设计方案(204页 WORD).......................................................................................96 6.1.2 模型微调与迭代优化.............................................................................................. 智能体方案 异常检测覆盖率 预设规则覆盖 65%场 景 机器学习识别 92%场景 工作底稿生成效率 4 小时/份 20 分钟/份(自动校验) 在技术实现路径上,我们采用分层架构设计:底层通过微调后 的 DeepSeek 模型处理非结构化文档,中间层构建审计知识图谱实 现条款关联,应用层则部署风险预警、抽样推荐等具体功能模块。 某试点项目数据显示,该方案使应收账款函证程序的耗时缩短 57%,同时将异常交易检出率提升 40%;其次,风险预测模块通过分析 历史审计案例库,可自动生成高风险科目预警清单,在试点项目中 成功识别出 87%的关联方交易异常;最后,其持续学习机制允许接 入会计师事务所的私有知识库,例如某四大事务所通过微调模型使 其掌握了该所特有的工作底稿编码规则。 审计场景关键能力对照表 | 功能模块 | 技术实现方案 | 审计价 值指标 | |—————–|—————————————|10 积分 | 212 页 | 1.52 MB | 1 天前3
保险行业理赔业务基于DeepSeek AI大模型应用设计方案(281页 WORD)..94 6.2 模型微调策略............................................................................................................................................................97 6.2.1 领域适应微调............ 上下文理解模块:基于 64 层 Transformer 解码器堆叠,每层 配备 128 头自注意力机制,支持最长 8k token 的上下文窗 口,足以覆盖保险条款全文 任务适配层:通过 LoRA 微调技术实现预训练模型向理赔场景 的快速迁移,仅需更新 0.1%参数即可适配核保规则变更 在架构设计上,模型采用动态计算路径优化技术。对于简单理 赔案件(如小额医疗险),模型自动激活浅层网络分支,推理延迟 85%案件的自动通过率。 模型针对保险行业特别优化的训练体系包含: - 领域自适应预训练:在 1200GB 保险专业语料上持续训练 - 对抗样本训练:包含 8 类常见欺诈模式的对抗数据集 - 条款对齐微调:使用对比学习技术确保输出与保险条款的严格对 应 实时服务能力通过以下技术实现保障: | 指标 | 性能参数 | 行业基准 | |———————|——————–|—————-|20 积分 | 295 页 | 1.87 MB | 1 天前3
阿里云:2025年阿里云百炼安全白皮书核心:贯穿生命周期的数据安全与隐私保护 73 2.3 扩展:支持客户弹性、灵活地应对外部攻击 78 3 阿里云百炼关键场景安全实践 82 3.1 场景一:发布并调用一个线上模型推理服务 82 3.2 场景二:使用私有数据微调一个专属模型 85 3.3 场景三:构建并运行一个 AI Agent/MCP 应用 88 4 构建可验证的信任:阿里云百炼的 90 安全承诺与未来愿景 4.1 当下的承诺:安全可信的五大基石 策略限定允许使用的加密协议版本和加密套件,防止低安全性协议被误用, 从而进一步提升整体链路的安全等级。 ● 存储加密:阿里云为各类云上产品提供落盘数据加密能力,确保静态数据(如 RAG 知识库文档、模型微调数据集等)在存储层面的安全性。核心存储类产品(如云 盘 EBS、关系型数据库 RDS、对象存储 OSS)均支持一键开启加密功能,无需额外配 置即可满足大规模数据的加密存储需求。此外,部分产品也支持 算力指数级扩展需求。 ● 平台层优化实现算力资源的极致利用。阿里云大模型平台能够实现万卡级弹性调 度,AI 算力有效利用率超 96%,可稳定运行千卡任务 5 周以上。DeepGPU 增强工具 包在 LLM 微调场景实现 80% 性能跃升,视觉生成任务推理效率提高 60%。通过全栈 优化,阿里云 AI 基础设施的模型算力利用率提升 20% 以上,在 MLPerf 基准测试中 取得显存优化领先成绩。 220 积分 | 59 页 | 45.36 MB | 1 天前3
2024年汽车AI大模型TOP10分析报告(59页 PPT)条件下支持推理(自监督学习)。 将模型在下游各种自然语言处理任 务上的小规模有标注数据进行微调 得到适配模型 预训练语言模型 从海量数据中自动学习知识 将模型在大规模无标注数据上进 行自监督训练得到预训练模型 不同特定任务 有标注训练数 据 模型预训练 模型微调 最终模型 ⼤规模⽆标注 ⽂本数据 预训练语⾔模型“预训练 + 微调”技术范 式 预 训 练 测试数据 微 调 2012 ,结合底层基础大模型和针对特定⾏业的精简数据微调,将训练出更为实 用、更易于产业落地的小型化大模型。 产业端 国产 AI 芯片自主研发 为确保中国大模型的长远发展和避免外部制裁风险,国内 AI 计算芯片的自主研发将成为关 键战略方向。 数据产权标准深化 优化和完善现有数据标准和规范,是 推动大模型“燃料”质量提升和数量增长的重要驱动 力, 在 2024 年将作为产业发展的首要任务。 “ 套壳”微调策略 为满足产业实际需求并适应中小企业的发展特点,“套壳”微调(即在现有大模型基础上 进 ⾏针对性调整)将成为除行业巨头外企业的主要发展策略。 人工智能伦理责任 随着大模型性能的飞速提升和实⽤性的增强 ,确保 AI 技术与社会伦理道德标准相—致将成 为⼤模型持续发展的关键考量因素。 在 2024 年,大模型的技术发展将趋向多功能与小型化,同时产业端将强调自主研发和行业标准10 积分 | 59 页 | 27.94 MB | 1 天前3
共 89 条
- 1
- 2
- 3
- 4
- 5
- 6
- 9
