罗氏医疗(梁莉):融合创新技术团队适应医疗行业的敏捷转型之路融合创新: 技术团队适应医疗行业的敏捷转型之路 梁莉 罗氏诊断 数字化平台技术产品总监 www.top100summit.com 梁莉 (Kylie Liang) 罗氏诊断 数字化平台技术产品总监 “ 产品经理: 传统行业(罗氏)- 负责领导产品经理和UI/UX工程师团队,从0到1构建数 字化平台和医疗健康数字产品。 科技行业(微软)- 从0到1构建全球Azure Spring top100summit.com 2021年11月 2022年3月 2022年6月 2022年9月 2022年12月 2023年3月 2023年6月 2023年9月 现在 敏捷转型之路 - “我”的视角 适应度(我的感受) 成熟度(我的观察) • 医疗健康行业迫切需要数字化转型,来提升 服务效率和质量。然后传统模式与新技术间 存在矛盾,比如原始数据不出域、数据可用 不可见。 • 罗氏诊断中国团队希望通过自研数字化平台 流程: 项目 vs. 产品 瀑布 vs. 敏捷 技术: 新技术 vs. 已有系统 传统IT工具 vs.DevSecOps 团队: 互联网节奏 vs. 行业特点 理念差异 vs. 包容适应 用户: 内部用户习惯 vs. 变革 外部用户习惯 vs. 创新 天 时 地 利 人 和 www.top100summit.com 定义战略 • 界定产品与项目、应用的区 别 • 定位打造开放的医疗数字化0 积分 | 42 页 | 2.53 MB | 6 月前3
打造自适应AI运维智慧体:大语言模型在软件日志运维的实践(29页 PPT)打造自适应 AI 运维智慧体: 大语言模型在软件日志运维的实践 刘逸伦 华为 2012 实验室 本科毕业于南开大学 ,硕士毕业于美国佐治亚理工学院。研究方向包括 AI 智能运维 ,大模型质量评估以及大模型提示策略 ,在相关领域以第一作者、 通讯作者身份在 ICDE 、 ICSE 、 IWQoS 等顶级国际会议 / 期刊发表 10 余篇 论文。 刘逸伦 华为 2012 文本机器翻译实验室工程 演讲嘉 宾 1. 软件日志运维观点 2. 自适应智慧体在运维领域面临的 Gap 3. 大模型 Prompt 引擎助力自适应运维智慧 体 4. 大模型知识迁移打造运维专精模型 5. 未来畅想 目录 CONTENTS PART 01 软件日志运维观点: 智能运维演进趋势是从任务数据驱动到自适应运维智慧体 (1) 日志是机器语言:大规模网络、软件系统在运行过程中每天会产生 预训练语言模型 日志语言理解 BigLog Da-Parser 第四代 原始日志和自然语言 文本 大语言模型 可解释性运维 LogPrompt 指令驱动 第五代 自适应运维智慧体:目标自适应、领域自适应、强交互性、可执行性。 。 。 表: LogAIBox 研究项⽬代际演进思路 [1]LogAnomaly: Unsupervised detection of sequential20 积分 | 29 页 | 9.28 MB | 1 月前3
DeepSeek资产配置进阶实践的20个核心问答能将历史规律挖掘与实时信号解析相结 合,形成具备自我进化能力的智能投研体系。 AI 通过非线性建模技术重构动态赋权机制,显著提升市场适应性。不同于经 典风险平价模型的静态风险分配逻辑,AI 融合 XGBoost 特征筛选与深度学习 的协同优势,创新性地引入信息系数平方加权、波动率敏感窗口等技术,实 现了自适应半衰期调整机制等功能。这种动态赋权体系能够捕捉因子间的协 同效应,在宏观因子与市场情绪的耦合分析中展现独特价值,有效应对市场 成 式 AI 为智能中枢,整合实时数据管道、动态知识检索与自动化风控模块, 突破传统回测框架的静态局限。RAG 技术实现分钟级市场信息更新与噪声过 滤,Agent 预设的多层级防御机制(包括波动率自适应调整、冗余策略池等) 显著提升黑天鹅事件应对能力。这种架构创新使系统具备"感知-决策-验证- 优化"的完整能力链,推动策略迭代周期从月度级压缩至实时级。 通过"AI 推理+人工兜底"混合模式,使 AI 了传统模型的逻辑可解释性, 又能通过 AI 动态适应市场变化,同时避免了直接训练大模型带来的复杂性和资源 消耗。 整个流程体现了"历史规律挖掘-规律映射学习-实时预测应用"的技术路径,通过 XGBoost 的先验分析为 AI 模型提供可靠的初始基准,再结合 DeepSeek 的推理能 力实现权重的动态优化,在保证模型稳定性的同时提升对市场变化的适应能力。 这种分阶段的设计既考虑了历史经验的传承,又充分发挥了10 积分 | 16 页 | 644.10 KB | 1 月前3
开放性的全栈式智能服务机器人生态-61页器人在不同细分场景中的协作和整合。通过推动 行业标准的建立和多技术栈的创新,该生态将为 全球服务机器人行业带来深刻的变革,推动服务 机器人迈向通用具身智能的新时代。 在这一生态系统中,机器人的学习和适应能力 将不断增强,能够更灵活地应对各种复杂的任 务和环境,实现跨场景任务的泛化性。此外, 该生态还将助力全球各行各业向智能化、高效 化迈进,创造出更大的经济价值和社会效益。 通过跨行业的合作与资源共享,该生态将帮助 新机器人在移动、操作、交互等核心技术栈方 面迎来关键性突破并推动了整个行业的创新与 发展。 从智能决策能力的提升来看,深度学习和自然 语言处理使机器人能够处理复杂的数据,并基 于实时数据进行自我学习和适应,从而提供个 性化的交互与服务,极大地提升了用户体验。 通过先进的传感器技术与AI算法结合,服务机器 人可以实时感知周围环境,识别动态障碍物并 做出智能反应,在保障安全的同时高效地完成 各类服务任务。此外,IoT技术的应用使得服务机 到前台的补货任务。服务机器人解决复合型任务 的需求亟待提升,以提供更全面的服务。 用户的需求呈现出多元化、复合型的发展趋势, 过去未被满足的场景需求亟待解决,这意味着 企业需要提供全栈式的通用机器人产品以适应 市场的不断变化与用户的多重需求。通过打造 全面的产品矩阵为用户提供清洁、配送、迎宾 引导等复合型的产品组合,确保在同一场景中 多种机器人之间能够实现完美的调度与协作, 从而提升用户体验的一致性。10 积分 | 61 页 | 6.62 MB | 22 天前3
世界互联网大会&联通:2025人形机器人应用与发展前瞻报告人形机器人作为人工智能与物理世界深度融合的前沿范式,正成 为智能技术突破虚拟边界的关键支点。人形机器人打破传统人工智能 的"离身认知"局限,通过独特的“人形”设计,使人工智能系统能够 无缝适应人类工作与生活环境,熟练操作为人类设计的工具与设备,实 现从纯粹信息处理到与物理世界通用交互的本质跨越,为人工智能提 供了理解和改造物理世界的最佳“身体”,进而实现真正的“知行合 一”。我们将 以快速融入人类社会,完成具体的任务,通用性和适应性较强。 人形机器人依据其结构与功能特性,可主要分为轮式人形机器人、 足式人形机器人以及通用人形机器人。轮式人形机器人采用轮式驱动, 搭配机器人手臂与灵巧手,兼具移动能力;足式人形机器人着重腿部 运动能力,手部主要用于平衡;通用人形机器人具备双足、双臂、双 手及各类感知和人工智能功能,有全面软硬件基础,能适应开放环境 中的多任务。 01 、机器学习、机器人学 等,形成了相对完整的学科分支。 2011年—2020年,进入技术突破阶段。深度学习技术的快速发展 为其注入了新的发展动力。出现大量仿生、类人机器人,帮助机器人 适应自然环境。比如本田的升级版ASIMO机器人能够精确完成抓取物 体和倒液体等精细任务,波士顿动力推出的Atlas可以在复杂的户外自 然环境中行走、奔跑、跳跃,还能在雪地、草地等不同地形上保持平 衡。5 积分 | 24 页 | 5.42 MB | 2 月前3
2025年面向具身智能的大小模型协同算法研究和实践报告行为和适应性 具身 智能 2 具身智能的基本概念 基于物理载体进行感知和行动的智能系统,其通过智能体与环境的交互获 取信息、理解问题、做出决策并实现行动,从而产生智能行为和适应性 具身 智能 传统智能 具身智能 只可远观,被动接受 别人告诉我这就是盒子 可以打开,可以装东西 我主动体验什么是盒子 被动抽象接受 主动具体体验 重要 意义 具身智能因其能自主产生智能行为和适应性,是通用人工智能的可能起点 大小脑模型协同的技术路线仍有机会 q 端到端模型虽决策高效,但泛化性和扩展性受限,受制于环境交互与硬件适配, 难以适应多样场景。而模块化的大小脑协同框架凭借强泛化、可解释优势,正成 为学界与业界的研究热点 模块化:大小脑协同框架赋予具身智能体模块化优势,具备可扩展架构、高效开发 与强适应性三大特性 可泛化:基于VLM开发的大脑具备丰富的多模态认知能力,且不受小脑模型的影响 可解释:决策过程更加透明,提升人机协同效率 Primitive-Level Robotic Dataset Towards Composable Generalization Agents, IROS 2025 真实交互:想象链强化行动执行的环境动态适应性 n MineDreamer (IROS 2025, NeurIPS 2024 OWA研讨会) n 当处理困难问题时,一种可靠的思路是预测未来可能的执行效果,评估当前行动的可行性,以 此来指导更可靠的行动执行20 积分 | 37 页 | 4.24 MB | 1 月前3
面向数字孪生流域建设的洪涝模拟解决方案(42页 PPT)用方式 土壤类 型 水利工 程布局 土壤含 水量 水文模型中的下垫面信息 模拟方法。 P7 模型普遍停留在定制化阶段 , 通用化程度不高 , 重复建模工作大 目前的水利专业模型尚不能适应智慧水利建设对水利专业模型“标准统一、接口规范、分布部署、 快速组装、敏捷复用”的要求, 已成为行业亟待攻关解决的卡脖子技术之一。 集中于数据模拟 , 与业务化 运用有一定的距离 针对性强 , ,可实现太阳能电池板供电 ,连续阴雨天运行 7 到 10 天。 l 全天候全自动无人值守系统 一键开关机 ,无需专业人员操作; 自适应体扫模式 ,选择最优观测角度; 自动切换运行模式 ,节能环保;数据量小 ,普通网络即可满足远程值守和数据传输。 l 高适应性水文行业需求及水文模型系统 雷达观测数据机内外实时订正;结合地面雨量计动态修正降水算法系数; 0~6 小时短时临近降水量预报产品; 法 . 中国 , CN201811187721.2. 基于物联网感知与反馈的模型参数尺度自适应技 术 技术成果: 提高模拟精 度 不同尺度下的 模拟结果 不同尺度下蓄水容量空 间分布 P14 综合考虑流域不同土地利用类型、 地形差异和建模精度要求 ,建立了基于空间异质性的自适应水 文 单元划分方法; 建立了产流模式时空动态转换的判别方法 ,在不同降水场景下动态匹配产流模型10 积分 | 42 页 | 7.73 MB | 22 天前3
AIGC+教育行业报告2024化。具体到教育行业,部分基础工作被替代,社会人力结构和人才需求被重塑。AIGC技术与现代 教育在教学内容、师资配置、交互方式等方面有着巧妙的吻合之处,彰显着技术落地的必要性。 AI技术也由教学辅助发展到自适应学习,推动大规模因材施教逐步落地。这些共同推高了时代对 AIGC+教育的瞩目,体现在资本投融资、各国政策监管、学术研究等多个方面。澳大利亚经历的 观望—禁止—反思—放开的挣扎历程,代表了全球的态度变迁,即不断与时俱进、同时守正创新。 www.iresearch.com.cn 中观:AI技术的发展及其教育推动 由教学辅助到自适应学习,AIGC技术变革推动大规模因材施教逐步落地 全球AI+教育经历了诞生期-摸索期-产业期三个阶段,在诞生期,AI和教育的结合主要围绕辅助教学进行探索,应用于答疑、练习、 模拟测试等环节,代替部 -世界上第 一例成功的 专家系统的 诞生 提出智 能型计 算机辅 助教学 系统的 构想 提出 智能 教学 系统 框架 提出 智能 导师 系统 概念 提出 智能 授导 系统 第一 个自 适应 教学 系统 问世 Hinton 发表深度 学习的 Nature 文章 CNN超第 二名十个百 分点夺冠 ImageNet 麻省理工 学院研发 社交技能 训练系统 MACH AlphaGo10 积分 | 55 页 | 3.32 MB | 7 月前3
2025年协作机器人产业发展蓝皮书-高工咨询Robots),是一种设计用于与人类在共同工作空间中安全地进行直接 交互或合作的机器人。协作机器人是工业机器人领域新的分支,与传统的工业机器人相比,协作机器人更强调安全 性、易用性和灵活性,它们能够适应各种工作场景,通常价格更低,体积更小,对人类来说更安全。 协作机器人具有安全、易用、灵活的特征,主要表现为: 安全性:协作机器人配备有先进的传感器技术和控制算法,如力矩传感器、视觉系统等,使其能够实时感知环境 业的操作员也能方便快捷地对其进行设置和 操作,降低了使用门槛。 灵活性:相比于传统固定在某个工作站上的工业机器人,协作机器人通常更轻便且布局更为灵活,可以快速重新 部署于不同的生产任务中,适应小批量、多品种的柔性化生产需求。 基于以上特征,协作机器人极大地促进了人机之间的交互和合作,不仅提升了生产线效率,还能在诸多应用场合中 替代或辅助人类执行重复性、精确度要求高或者对人体有害的工作 等。 双臂协作机器人拥有两个相互独立或协同工作的机械臂,能提供更高的灵活性和功能性。它们通常用于更复杂的任 务,比如需要双手协调操作的应用场景,能够模拟人类双手的工作模式,实现更高程度的自主性和适应性。双臂设计 允许在有限空间内完成多自由度的动作,并具备处理更大范围工作空间的能力。 (单臂协作机器人) (双臂协作机器人) 第二节 协作机器人特点 一、产品特点 协作机器人与传统20 积分 | 141 页 | 4.30 MB | 1 月前3
人形机器人标准化白皮书(2024版)-全国机器人标准化技术委员会........................................................................................67 4 6.1 适应新产业发展新需求,提升有效供给.................................................................................... 常基于预设的规 则和指令,虽然可以在一定程度上应对环境变化,但并不一定具备真 正的理解和适应能力。智能性是指物体或系统具有类似人类的智慧、 学习和适应能力,智能体能够感知环境、进行决策并采取行动,同时 不断学习和优化自身行为,以实现特定目标。这种能力不仅要求具备 自主性,还需要具备感知、学习、适应和决策等更高级的功能。所以 虽然所有机器人都具备自主性,但是并不是所有机器人都具备智能性, 年起,ASIMO 逐步融合视觉识别等技术, 具备了基本的交互能力,能够完成如拧瓶、倒水、端茶和踢球等任务, 标志着人形机器人进入了集成的发展阶段。然而,ASIMO 在应对不平整 地面和未知扰动方面的适应性仍然较为有限。 2013年,波士顿动力公司发布了更具影响力的由液压驱动的Atlas 人形机器人,能够推开房门、在各种复杂地形中行走,并具备自我恢 复平衡的能力。2017 年,第四版 Atlas10 积分 | 89 页 | 3.98 MB | 7 月前3
共 169 条
- 1
- 2
- 3
- 4
- 5
- 6
- 17
