2025年DeepSeek-R1Kimi 1.5及类强推理模型开发解读报告Scaling 提升模型的推理能力? ➢ 得益于纯大规模强化学习,DeepSeek-R1 具备强大推理能力与长文本思考能力,继开源来备受关注。 ➢ DeepSeek R1-Zero 和 R1的出现再次证明了强化学习的潜力所在: ➢ R1-Zero 从基础模型开始构建,完全依赖强化学习,而不使用人类专家标注的监督微调(SFT); ➢ 随着训练步骤增加,模型逐渐展现出长文本推理及长链推理能力; ➢ 随着推 随着推理路径增长,模型表现出自我修复和启发式搜索的能力; 4 DeepSeek-R1 开创RL加持下强推理慢思考范式新边界 ➢ 得益于强大的推理能力与长文本思考能力,DeepSeek R1在复杂任务上表现卓越,成为开源领域的又 一里程碑,标志着开源社区在与闭源大模型(如 OpenAI o1 系列)的竞争中迈出了关键性一步。 ➢ DeepSeek-R1 在数学代码任务上表现突出 ➢ Deepseek Law ➢ Post-Training 阶段,随着训练时计算量(来自RL的Training阶段)和 Test-Time 计算量 (例如Test-Time Search)的增长,模型性能(例如数学推理能力)也会随之提升 ➢ Post-Training Scaling Laws 下 训练时计算量 多了一个新的变量:Self-Play 探索时 LLM Inference 的计算量 [1] https://openai10 积分 | 76 页 | 8.39 MB | 6 月前3
DeepSeek大模型赋能高校教学和科研2025Operator DeepSeek R1 1.4 未来人工智能发展 5 个阶 段 2. 人工智能思维 厦门大学大数据教学团队作品 拥有和人工智能协作的能力, 懂得如何运用人工智能 2. 人工智能思 维 具备区分人的能力 和机器的能力 协作 区分 了解 每个人都应了解人工智能 的基础运行模式 2024 年 12 月 , 人工智能教母级人物、 斯坦福大 学终 身教授李飞飞在公开演讲中说道: 3.5 大模型原理 3.6 大模型产品 3.7 大模型应用领 域 厦门大学大数据教学团队作品 大模型通常指的是大规模的人工智能模型 ,是一种基于深度学习技术 ,具 有 海量参数、强大的学习能力和泛化能力 ,能够处理和生成多种类型数据的 人 工智能模型。 通常说的大模型的“大”的特点体现在: 2020 年 , OpenAI 公司推出了 GPT-3 ,模型参数规模达到了 1750 亿。 2023 以应对更复杂、 更庞大的数据集或任务。 大模型通常能够学习 到 更细微的模式和规律 ,具有更强的泛化能力和表达能力 学习能力强 大模型可以从大量的数据中学习, 并利用学到的知识和模式来提供 更精准的答案和预测 。这使得它 们在解决复杂问题和应对新的 场 景时表现更加出色 上下文理解能力 大模型具有更强的上下文理解能 力 ,能够理解更复杂的语意和语 境10 积分 | 123 页 | 15.88 MB | 6 月前3
英特尔-工业人工智能白皮书2025年版AI 技术和大模型,是企业从多维度重塑自身生产方式、实现新质生产力的关键。 通过这本白皮书,工业领域的企业和合作伙伴可以更系统、更全面地了解 AI 技术如何为工业制造的各 个环节赋予怎样的智能化能力,以及英特尔在帮助企业落地部署 AI 技术方面所能提供的产品、平台和 系统性支持与服务以及成功案例。 本白皮书中包括了工业 AI 和工业大模型的概念介绍、当前的市场规模与市场增长潜力、工业 AI 理海量数据、完成各种复杂的任务,如自然语言处理、计算机视觉、语音识别等。大模型通常包括大语言模型 (LLM)、视觉 大模型 (CV)、多模态大模型等各种类型。 大模型通过训练海量数据来学习复杂的模式和特征,具有更强大的泛化能力,可以对未见过的数据做出准确的预测,能够处 理更加复杂的任务和数据。 展开来讲,大模型技术有以下几项基本特征: 1. 普遍基于 Transformer 架构。Transformer 架构通过引入自注意力 高效处理和理解。由于不依赖序列顺序,Transformer 架构在模型训练和推理时的并行处理能力更强,效率更高。 2. 参数规模大。大模型通常包含数千万、数亿甚至更多参数;巨大的参数规模使大模型能够处理更加复杂和多样的任务。 3. 强大的泛化能力。大模型通过在大规模数据集上进行训练,学习到了丰富的知识和特征表示,从而具有强大的泛化能力, 能够有效处理多种从未见过的数据或新任务,甚至能处理一些与训练数据截然不同的任务。这使得大模型能应用于多种任0 积分 | 82 页 | 5.13 MB | 5 月前3
AI跃迁派:2025年DeepSeek零基础完全指南DeepSeek(深度求索)是中国首个全栈开源的大语言模型,由杭州深度求索人工智能 公司研发,定位为“认知智能引擎”。简单来说,它是一个能像人类一样思考、学习和解 决问题的超级 AI 工具。 核心能力: ⚫ 复杂推理:像学霸解数学题一样处理逻辑难题(R1 模型) ⚫ 多模态融合:能理解文字、图片、文件等多种信息(未来还将支持语音和视频) ⚫ 超长上下文:一口气读完 3-4 万字的长文档(64Ktoken 成为数智主权建设工具,帮助发展中国家摆脱 对西方技术的依赖 ⚫ 开源策略吸引全球 20 万开发者,形成中美双极化的 AI 生态格局 二、核心能力图谱 1.技术特性:AI 界的“六边形战士” DeepSeek 之所以成为现象级 AI 工具,关键在于它在效率、成本、能力三大维度实现 了突破性平衡: 技术黑话翻译: ⚫ MoE 混合专家系统:像医院分诊台,遇到数学题自动转接“数学博士”,写诗转接 修正:“让不同专家模块共同解决这个问题” 5.过度依赖 错误:直接使用 AI 生成的医学诊断建议 修正:要求“提供相似病例和检查建议,需医生复核” 4.高阶技巧:解锁 AI 的隐藏能力 ①数据直通车 操作流程: 1.粘贴 Excel 销售数据→输入“分析 Q4 各品类销售额占比” 2.追加“生成可视化代码(Pythonmatplotlib)” 效果:10 分钟完成原本需10 积分 | 21 页 | 1.01 MB | 6 月前3
华为昇腾DeepSeek解决方案Proprietary - Restricted Distribution 2 训练资源 • 随着 DeepSeek 提供了一种高效率训练的方法,同等 算力规模可以探索更强的模型能力 • 在竞争背景下,头部玩家仍将追逐 Scaling Law ,坚定 AI 算力的战略投资,加速探索下一代 AI 技术 DeepSeek 是 AI 发展史上的一个关键里程碑,但远未达到 Scaling Law 升级,模型能力 = 算力 x 数据 x 思考 + 逻辑推理 DeepSeek-V3/R1 OpenAI-o1/o3 算力 x 数据 重新定义 Scaling Law 延续智能涌现的 方向 2017 谷歌发布首个 Transformer 架 构 模 型 2023 ChatGPT 模型能力突破 开启 NLP 时代 2012 AlexNet AlexNet 模型能力突破 开启 CV 时代 1998 LeNet 首个 CNN 架构模型 2025 DeepSeek 效率与成本双突破 NLP 全面普及 2015 Resnet 效率与成本双突破 CV 全面普及 AI 模型算法: DeepSeek 国家战略清晰 技术创新依赖资本投入 NLP 自然语言处理 双轮驱动互锁 战略坚定 + 技术创新 CV0 积分 | 32 页 | 2.52 MB | 5 月前3
山东大学:DeepSeek 应用与部署RL DeepSeek 应用场 景 DeepSeek 的能力层级 • 1. 基础能力层 多模态数据融合与结构化理解 ,包括跨模态语义对齐(文本、 图像、 音频、 视频、 代 码、传感器数据统一语义) 和动态数据治理(解决数据缺失、 噪音干扰、 概念飘逸等) , 支持 200 多 种数据格式自动解析。 • 2. 中级能力层 领域问题建模与复杂推理 ,包括领域自适应学习(建立医、 和多目标优化决策(求解帕 累托最有解) 。 • 3. 高级能力层 复杂系统建模与自主决策 ,包括数字孪生仿真系统(构建物理于数字融合虚拟环境 模拟天气等) 、 多智能体协同优化(将每个个体作为智能体通过联邦学习模拟群体行为) 和元认 知调 控机制(实施监控自身决策、 动态分配资源、 自动触发行为) 。 • 4. 终极能力层 自主进化与创造性突破 ,包括概念空间探索(通过对抗网络探索新合金成分等) ,包括概念空间探索(通过对抗网络探索新合金成分等) 、 范式转移预警(监控跨领域知识流、 识别技术革命前兆) 和自编程能力(自动模块设计、 代码编 写、 测试用例) 。 " 恨聪明 但没那么听话 " DeepseekV3 Deepseek R1 Deepseek r1 鞅的证 明 Deepseek r1 Roy 安全准则组合模型推 理 Deepseek r1 推理玻尿酸配 方 DeepSeek 提示词工10 积分 | 79 页 | 6.52 MB | 5 月前3
从智慧教育到智慧课堂:理论、规范与实践基于大数据的科学研究 26 云计算 • 云计算中的“云”主要用来强调计算泛 在性和分布性,实质上是分布式计算、 并行计算和网格计算等技术的发展。 • 将分布在各地的服务器群进行网联, 能够实现大规模计算能力、海量数据 处理和信息服务的需求。 27 云计算 创 新 • 学生通过电子书包 等终端随时随地享 受云端的各种学习 服务 云学习环境 • 保证学习数据的永 不丢失,为学习分 析提供数据支持 充分激活学生潜能与创意,促进数字技术和 个人制造的有效融合,让学生有更多的实践动手 的机会,我们高标准建设“ STEM 创新学习实验 室” ,让学生在实践操作中开展创客式学习,培 养学生创新能力。 S 学习实验室 ( 科学 Science ) T 学习实验室 ( 技术 Technology ) E 学习实验室 (工程 Engineering ) A 学习实验室 (艺术 Arts 企业信息门户具有促进协作的能力。 在专业课程中增加了 Web 2.0 内 容。 智慧教育成果 基于角色的、为所有学生学习和资 新加坡职业学院自从 1954 年以来, 已培养了 14.5, 万毕业生。 智慧课堂:智慧工作,实现可达性学习 与学生一起工作:将团队、学习者和教师连接在一起。 将个体需求融合到团队需求中:有利于培养创新能力。 实现参与性和交互性用户体验:通过10 积分 | 74 页 | 10.39 MB | 6 月前3
浙江大学-DeepSeek模型优势:算力、成本角度解读2025DeepSeek 模型优势:算力、成本角度 解读 2025 年 2 月 ■ 什么算力 ?“ 对信息数据进行计算,实现目标结果的能力” ■ 传统算力:信息计算力 ■ 现代算力:信息计算力、数据存储力、网络运载力 算力的基本概念 大脑 草绳、石子 算盘、算筹 ▶ 计算器、计算机 ■ 原生算力:大脑 ( 可处理复杂逻辑,但不能高速处理简单运算10 积分 | 23 页 | 7.53 MB | 5 月前3
共 8 条
- 1
