英特尔-工业人工智能白皮书2025年版AI 技术和大模型,是企业从多维度重塑自身生产方式、实现新质生产力的关键。 通过这本白皮书,工业领域的企业和合作伙伴可以更系统、更全面地了解 AI 技术如何为工业制造的各 个环节赋予怎样的智能化能力,以及英特尔在帮助企业落地部署 AI 技术方面所能提供的产品、平台和 系统性支持与服务以及成功案例。 本白皮书中包括了工业 AI 和工业大模型的概念介绍、当前的市场规模与市场增长潜力、工业 AI 和工业 和大模型落地部署从硬件,到软件,到 整体方案的技术赋能。 英特尔希望通过本白皮书,促进工业 AI 技术的广泛应用,并与行业伙伴共同探讨和制定工业 AI 的标准 化流程和最佳实践,共同构建开放、协同的工业 AI 生态系统,推动制造业向智能制造转型升级,赋能 新质生产力。 — 张宇博士 英特尔中国区网络与边缘事业部首席技术官 前言 目录 01 02 工业人工智能 (AI) 行业观察 ......... 较多、较为成功的一个方向。 • 智能生产管理: 在生产计划和排程方面,AI 算法可以优化生产计划 和排程,最大程度地减少产线空闲时间,提高产品交 付准时率。 在生产资源分配方面,通过深度学习和大数据分析, AI 系统能够根据实时数据预测生产任务,自动调整 生产参数,并合理地分配人力、设备、物料等生产资 源,提高资源利用率,确保生产线始终保持在最佳工 作状态,提高生产效率。 在生产过程监控和优化方面,AI0 积分 | 82 页 | 5.13 MB | 5 月前3
从智慧教育到智慧课堂:理论、规范与实践社群进行沟通和交流 提供支持 无缝切换 无缝切换 联接社群 系统集成 虚实融合 多终端访问 系统集成 遵循技术标准,跨级、跨 域教育服务平台之间实现 数据共享、系统集成 虚实融合 通过增强现实等技术 实现物理环境与虚拟 环境的无缝融合 多终端访问 支持任何常用终端设备无缝 连接到各种教育信息系统, 无缝获取学习资源与服务 联接社群 学习者的多个学习终 端之间实现数据同步、 • 按需推送活动 • 按需推送服务 • 按需推送工具 • 按需推送人际资源 19 可视化 可视化是信息时代数据处理与显示的必然趋势,是 智慧教育观摩、巡视、监控的必备功能,是智慧教 育系统的重要特征。 • 可视化监控 • 可视化呈现 • 可视化操作 智慧技术创新应用 21 物联网 大数据 云计算 泛在网络 ① ② ③ ④ 23 物联网 创 新 学生体质健康 学科中开展基于移动终端的云学习,并借助无线互联网和智能移动 终端,进行教学创新,以期探索出具有南方科技大学实验学校特质 的信息化教与学模式。 配备 PAD 移动终端(板书、分 享、评价、展示) Windows8 操作系统、多点触控显示器 1. 构建新技术支持的全新教学环境 终端: IPAD 学习环境 学习环境: STEAM 学习实验室 STEM 学习实验室2 充分激活学生潜能与创意,促进数字技术和10 积分 | 74 页 | 10.39 MB | 5 月前3
AI跃迁派:2025年DeepSeek零基础完全指南超长上下文:一口气读完 3-4 万字的长文档(64Ktoken 容量) 技术架构: ⚫ MLA 多头潜在注意力:像多线程处理信息,显存占用降低 50%,适合普通电脑运 行 ⚫ MoE 混合专家系统:遇到问题自动召唤“专业团队”,比如数学题找数学专家模 块,写诗找创意模块 ⚫ 强化学习驱动:通过“试错+奖励”机制自我进化,类似游戏 AI 自学通关 2.划时代意义:中国 AI 的破局之战 技术特性:AI 界的“六边形战士” DeepSeek 之所以成为现象级 AI 工具,关键在于它在效率、成本、能力三大维度实现 了突破性平衡: 技术黑话翻译: ⚫ MoE 混合专家系统:像医院分诊台,遇到数学题自动转接“数学博士”,写诗转接 “文学教授” ⚫ MLA 多头潜在注意力:让 AI 像章鱼同时处理多任务,普通电脑也能流畅运行 ⚫ DualPipe 通信技术:优化 下载安装: 1.访问官网选择 Windows/macOS/Linux 版本 2.解压安装包后按向导完成部署(建议默认路径) 高阶功能: ⚫ API 接入:开发者可调用接口集成至办公系统(需申请密钥) ⚫ 批量处理:同时上传多个文件进行交叉分析(如对比 10 份合同条款) 2.新手必学操作:3 分钟成为熟练用户 ①账号注册与登录 ⚫ 注册方式:手机号/微信/邮箱三选一,接收验证码完成认证10 积分 | 21 页 | 1.01 MB | 5 月前3
山东大学:DeepSeek 应用与部署,包括领域自适应学习(建立医、 教育、 金融垂直应用于 模型) 、 因果推理引擎(建立因果图模型) 和多目标优化决策(求解帕 累托最有解) 。 • 3. 高级能力层 复杂系统建模与自主决策 ,包括数字孪生仿真系统(构建物理于数字融合虚拟环境 模拟天气等) 、 多智能体协同优化(将每个个体作为智能体通过联邦学习模拟群体行为) 和元认 知调 控机制(实施监控自身决策、 动态分配资源、 :角色扮演、多轮对话、 反问引导。 • 4. 技能应用类 :数学计算、代码解释、 逻辑推理。 • 5. 个性化定制类 :风格迁移、知识库绑 定、偏好记忆。 • 6. 系统操作类:模式切换、资源优化、 记 忆管理。 • 7. 知识查询类:事实核查、概念解释、 溯 源检索。 • 8. 教育与研究类:题目生成、论文润色、 实验设计。 • 9. 多模态处理类: 13B/20B 模型: 至少 24GB 显存 ■ 70B 模型: 需多卡并行(如 2xA100 ) 支持 CUDA 11.7+ 和 cuDNN 8.5+ 2. 系统要求 Linux ( Ubuntu 20.04+ ) 或 Windows WSL2 Python 3.8+ ,推荐使用 Anaconda/Mini cond a 管理环境 DeepSeek10 积分 | 79 页 | 6.52 MB | 5 月前3
DeepSeek大模型赋能高校教学和科研2025Transformer 架构 ,经过大量文本数据训练而成 ,能够生成自 然、 流畅的语言 ,并具备回答问题、 生成文本、 语言翻译等多种功能 ChatGPT 的应用范围广泛 , 可以用于客服、 问答系统、 对话生成、 文本生成等领域。 它能够理解人类语言 ,并能够回 答各 种问题 ,提供相关的知识和信息。 与其他聊天机器人相比 , ChatGPT 具备更强的语言理解和生成能力 ,能够更自 然地与人 (如文章、小说、新闻等的创作)、翻译系统(能够实现高质量 的 跨语言翻译)、问答系统(能够回答用户提出的问题)、情感 分析 (用于判断文本中的情感倾向)、语言生成(如聊天机器 人)等 大模型的应用领域非常广泛 ,涵盖了自然语言处理、 计算机视觉、 语音识别、 推荐系统、 医疗健康、 金融风控、 工业制造、 生物信息学、 自动驾驶、 气候研究等多个领域 3.7 大模型的应用领 域 ( 4 )推荐系统 大模型可 大模型的应用领 域 金融风控 自动驾驶 医疗健康 大模型可以用于信用评估、欺诈检测等任 务 。通过分析大量的金融数据 ,大模型 可 以评估用户的信用等级和风险水平, 以及 检测欺诈行为,提高金融系统的安 全性和 稳定性 大模型可以用于医疗影像诊断、疾病预测 等任务 。通过学习大量的医学影像数据 , 大模型可以辅助医生进行疾病诊断和治 疗 方案制定,提高医疗水平和效率 型可以实现对车辆周围环境的感知和识别,10 积分 | 123 页 | 15.88 MB | 5 月前3
华为昇腾DeepSeek解决方案模型,总参数量 671B ,激活参数量 37B ,采用 2048 张 H800 (节点内 NVLink ,节点间 IB ,非超节点架构) 在 14.8T token 数据集上基 于自 研 HAI-LLM 训练系统总计训练了 1394h ( 58.08 天) 性能优 数学、科学和代码等领域领先业界, 成为业界公认的 LLM 的领先模型 来源: DeepSeek 模型测试数据 & 互联网 硬件级优化 Atlas 800I A2 (512GB) Atlas 800I A2 (256GB) Atlas 300V Atlas 300I Duo 系统吞吐 432 Token/s 系统吞吐 并发路数 系统吞吐 3300 Token/s 系统吞吐 4940 Token/s@32B 7500 Token/s@14B 730 Token/s@14B 956 Token/s@8B 956 Token/s@7B 力 珑 京科 技 珑 京科 技 思 腾合 力 潞 晨科 技 思 腾合 力 珑 京科 技 1911 Token/s 系统吞吐 并发路数 并发路数 并发路数 并发路数 165 路 192 路 16 路 13 … 模型集合 模型名称 参数 计算精度 产品 配置 系统吞吐 token/s 并发用户数 DeepSeek-V3 DeepSeek V3 671B INT8 Atlas0 积分 | 32 页 | 2.52 MB | 5 月前3
2025年DeepSeek-R1Kimi 1.5及类强推理模型开发解读报告智能边界。 ➢ 例如,通过跨模态对齐技术,模型能将CT影像的灰度特征与病理报告的专业术语建立语义关联, 在医疗诊断中同步分析X光片阴影分布与患者主诉症状。此外,这种时空关联推理能力使得自动驾 驶系统能同时解析路况视频中的车辆轨迹、交通信号灯的闪烁频率以及周围环境的异常声响,实 现更精确的多维度风险预判。 ➢ 强推理能力在全模态场景下的扩展面临诸多挑战。文本模态场景下,许多复杂推理任务可以 胡克定律:在弹性限度内,弹簧弹力𝑭和 长度变化量𝒙成线性关系,即:𝑭 = −𝒌𝒙, 弹力系数𝒌 ,弹力与其形变方向相反,表 示它有使系统不改变的趋势; 模型是否具有与 弹簧类似的属性 从而抗拒改变? 𝑝𝜃’ 𝑝𝜃 从最简单的弹簧系统建模,探究大模型内在抗拒对齐的机理 ➢ 弹力系数𝒌:表示为大模型本身性质,与模型参数量和预训练数据相关; ➢ 长度变化量𝒙:表示对齐前后的模型的变化,一般用KL散度刻画; 内建价值冲突 \ 单智能体系统下 的安全,并不保证多智能体系统安全 \AI系统伪装已被“安全对齐”,行为欺骗监管 ➢ 随着 VLA \ Agent 等模型下游和赋能应用兴起,确保模型AI系统准确应对不确定性,考虑物理规律下的人 类价值观对齐至关重要 ➢ 在复杂动态环境中不仅要短期安全,还要确保长期行为的安全性,例如对操作环境造成影响。 ➢ 通过形式化验证和RL,提升AI系统的可靠性与处理复杂推理问题的能力。通过构建形式化数学数据库,10 积分 | 76 页 | 8.39 MB | 5 月前3
浙江大学-DeepSeek模型优势:算力、成本角度解读2025万亿模型计算次数 C≈ 6* N * D 1 ≈ .5*1025 OpenAI."Scaling Laws for Neural Language Models",2020 ■ 万亿大模型预训练系统成本估计 ■ 条件:计算量 C≈ 6 * N * D ≈1.5*1 025 ■ 最低时间、成本估计 ■ 单 H800(25 万 ):1.5*1010 秒 (174000 天 ) ■ 1000 HBM 芯片 光刻机: 2024 年限制荷兰 ASML 出口 7nm 光刻机到 中国 时代背景:算力卡脖子 deepsee k DeepSeek 等国内大模型的“上甘岭”时刻 Al 算法与系统协同深度优化 反斜面坑道 ( 战术穿插 ) 范弗利特弹药量 ( 地毯轰 炸 ) 大资金、大算力、大模型 “ 大模型” 》10 积分 | 23 页 | 7.53 MB | 5 月前3
共 8 条
- 1
