英特尔-工业人工智能白皮书2025年版* 编辑按姓名首字母排序 人工智能 (AI) 技术的快速发展掀起了新一轮工业革命浪潮,通用大模型的出现让 AI 技术从专用化迈向 了通用化。AI 技术正在步入工业领域的千行百业,帮助企业实现从传统的劳动密集型、资源密集型企 业,向技术密集型、知识密集型的高端化、智能化、绿色化方向转型升级,打造依托于人工智能、大 数据、云计算等现代信息技术的新质生产力。 工业 AI 和大模型的应用,已经 本,增强竞争力。 在日趋激烈的工业市场竞争中,寻求部署新技术来提升综合竞争力,是企业的生存之道。而引领工业 革命浪潮的 AI 技术和大模型,是企业从多维度重塑自身生产方式、实现新质生产力的关键。 通过这本白皮书,工业领域的企业和合作伙伴可以更系统、更全面地了解 AI 技术如何为工业制造的各 个环节赋予怎样的智能化能力,以及英特尔在帮助企业落地部署 AI 技术方面所能提供的产品、平台和 系统性支持与服务以及成功案例。 业 AI 和大模型落地部署从硬件,到软件,到 整体方案的技术赋能。 英特尔希望通过本白皮书,促进工业 AI 技术的广泛应用,并与行业伙伴共同探讨和制定工业 AI 的标准 化流程和最佳实践,共同构建开放、协同的工业 AI 生态系统,推动制造业向智能制造转型升级,赋能 新质生产力。 — 张宇博士 英特尔中国区网络与边缘事业部首席技术官 前言 目录 01 02 工业人工智能 (AI)0 积分 | 82 页 | 5.13 MB | 5 月前3
AI跃迁派:2025年DeepSeek零基础完全指南技术架构: ⚫ MLA 多头潜在注意力:像多线程处理信息,显存占用降低 50%,适合普通电脑运 行 ⚫ MoE 混合专家系统:遇到问题自动召唤“专业团队”,比如数学题找数学专家模 块,写诗找创意模块 ⚫ 强化学习驱动:通过“试错+奖励”机制自我进化,类似游戏 AI 自学通关 2.划时代意义:中国 AI 的破局之战 DeepSeek 的诞生不仅是技术突破,更是国家战略级的里程碑: 国家战略: ⚫ 突破“卡脖子”技术:仅用 2000 块国产昇腾芯片完成训练 ⚫ 构建自主技术生态:带动华为昇腾、寒武纪等国产芯片产业发展 3.功能定位:你的全能数字助手 DeepSeek 不是冷冰冰的工具,而是能融入生活的智能伙伴: 4.技术普惠:AI 民主化的中国方案 DeepSeek 通过两大创新让 AI 技术“飞入寻常百姓家”: 1.开源开放 参数大模型压缩到 1.5B,手机都能运行专业级 AI 5.国际影响:技术出海的东方智慧 ⚫ 在东南亚、中东等地区,DeepSeek 成为数智主权建设工具,帮助发展中国家摆脱 对西方技术的依赖 ⚫ 开源策略吸引全球 20 万开发者,形成中美双极化的 AI 生态格局 二、核心能力图谱 1.技术特性:AI 界的“六边形战士” DeepSeek 之所以成为现象级 AI10 积分 | 21 页 | 1.01 MB | 6 月前3
2025年DeepSeek-R1Kimi 1.5及类强推理模型开发解读报告DeepSeek-R1 Zero 及 R1 技术剖析 ➢ Pipeline 总览 \ DeepSeek-V3 Base \ DeepSeek-R1 Zero 及 R1 细节分析 ➢ RL 算法的创新:GRPO及其技术细节 ➢ DeepSeek-R1 背后的Insights & Takeaways:RL加持下的长度泛化 \ 推理范式的涌现 ➢ DeepSeek-R1 社会及经济效益 ➢ 技术对比探讨 ➢ STaR-based STaR-based Methods vs. RL-based Methods 强推理路径对比 (DS-R1 \ Kimi-1.5 \ o-series) ➢ 蒸馏 vs. 强化学习驱动:国内外现有各家技术路线对比分析及Takeaways ➢ PRM & MCTS 的作用 ➢ 从文本模态到多模态 ➢ 其他讨论:Over-Thinking 过度思考等 ➢ 未来方向分析探讨 ➢ 模态穿透赋能推理边界拓展:Align-DS-V LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters 8 DeepSeek-R1 技术剖析:DeepSeek-R1 Zero DeepSeek-R1 Zero: 无需监督微调SFT,纯强化学习驱动的强推理模型 DeepSeek-v3-Base (671B) DeepSeek-R1-Zero10 积分 | 76 页 | 8.39 MB | 6 月前3
从智慧教育到智慧课堂:理论、规范与实践智慧教 育 已 成 共 识 新加坡 2006 年iN2015 计划 智慧教育计划 提出 建立学习者为中 心的个性化学习 空间 建设国家范围的 教育基础设施 使新加坡成为全 球教育领域使用 信息技术的创新 中心 5 智慧教 育 已 成 韩国 " 智 慧 教 育 推 进 战 略 " 2011 年 数字教科书的普及推广 核心 6 智慧教 育 已 成 马来西亚 1999 年“智慧学校 智慧学习者及智慧学习 智慧课程 智慧教学 智慧教育资源 智慧评价(教、学) 智慧服务 智慧教室 智慧校园 智慧平台 智慧教育方式 10 信息技术 与学科教 学深度融 合 全球教育 资源无缝 整合共享 无处不在 的开放、 按需学习 基于大数 据的科学 分析与评 价 绿色高效 的教育管 理 技 术 特 征 情景感知 无缝连接 有效联接和利用学习 社群进行沟通和交流 提供支持 无缝切换 无缝切换 联接社群 系统集成 虚实融合 多终端访问 系统集成 遵循技术标准,跨级、跨 域教育服务平台之间实现 数据共享、系统集成 虚实融合 通过增强现实等技术 实现物理环境与虚拟 环境的无缝融合 多终端访问 支持任何常用终端设备无缝 连接到各种教育信息系统, 无缝获取学习资源与服务 联接社群10 积分 | 74 页 | 10.39 MB | 6 月前3
DeepSeek大模型赋能高校教学和科研2025:林子雨 副教授 年轻力量: 核心成员全部 46 周岁以下 结构合理: 教学型、 科研型、 实验工程师 专注专业: 从 2013 年至今 , 11 年专注于大数据教学 团队特点: 眼光前瞻、 紧跟技术、 创新实干、 执行力 强 影响力高: 多项指标在国内高校大数据教学领域领 先 • 教材数量 • 教材占有率 • MOOC 课程学习人数 • 师资培养 • 教学研讨会 • 教学网站访问量 这次会 议汇 聚了众多杰出的科学家和工程师 ,他们共同探讨和研究人工智能的发展和应用前景 这次会议的主题围绕着人工智能的定义、 研究方法和应用场景展开。 与会者们深入探讨了人工智能的基本概念、 算法和技术, 以及其在各个领域的应用潜力。 他们共同认识到 ,人工智能的研究和发展将为人类带来巨大的变革和进步 1.2 人工智能的诞 生 在这次会议上 , “人工智能”这个词汇被约翰 . 麦卡锡( John 大模型分类 3. 大模型:人工智能的前 沿 3.5 大模型原理 3.6 大模型产品 3.7 大模型应用领 域 厦门大学大数据教学团队作品 大模型通常指的是大规模的人工智能模型 ,是一种基于深度学习技术 ,具 有 海量参数、强大的学习能力和泛化能力 ,能够处理和生成多种类型数据的 人 工智能模型。 通常说的大模型的“大”的特点体现在: 2020 年 , OpenAI 公司推出了 GPT-310 积分 | 123 页 | 15.88 MB | 6 月前3
华为昇腾DeepSeek解决方案Scaling Law ,坚定 AI 算力的战略投资,加速探索下一代 AI 技术 DeepSeek 是 AI 发展史上的一个关键里程碑,但远未达到 AI 终点 AI 模型算法: GPT 、 LLaMA AI 框架: PY 、 TF 异构计算架构: CUDA 互联技术: NV Link AI 芯片: NV 、 AMD • DS 对强化学习的创新使用, 竞争中,冲击美国 AI 霸权 • 打破 NV+OpenAI 的资金、技术、人才的垄断,全球 重新思考中美技术路线的选择 泛化性和经济性大幅提升 LLM 进入“ CV Resnet 时刻” 补齐最后一块自主创新的版图 真正形成中美两条 AI 技术路 线 AI 框架:昇思、飞桨 … 异构计算架构: CANN … 互联技术:灵衢 AI 芯片:昇腾、寒武纪 … DeepSeek-R1 CV 全面普及 AI 模型算法: DeepSeek 国家战略清晰 技术创新依赖资本投入 NLP 自然语言处理 双轮驱动互锁 战略坚定 + 技术创新 CV 计算机视觉 3 Huawei Proprietary - Restricted Distribution 下一代 AI 技术 Mamba 、空间智能 等 算力 x 数据 x 思 考 模 型 效 果0 积分 | 32 页 | 2.52 MB | 5 月前3
山东大学:DeepSeek 应用与部署大语言模型 LLM : 2018 — 2024 DeepSeek 介 绍 DeepSeek : 2023 — DeepSeek : 技术创新——模型架构 | V2 ( Multi-Head Latent Attention ) DeepSeek : 技术创新—模型架构 | V3 PPO : Proximal Policy Optimization GRPO : Group Relative )在环境 ( Environment )中不断尝试、学习 ,并优化自己 的策略( Policy ) ,最终获得最大化的奖励 ( Reward )。 DeepSeek : 技术创新—推理模型 | RL DeepSeek 应用场 景 DeepSeek 的能力层级 • 1. 基础能力层 多模态数据融合与结构化理解 ,包括跨模态语义对齐(文本、 图像、 音频、 视频、 控机制(实施监控自身决策、 动态分配资源、 自动触发行为) 。 • 4. 终极能力层 自主进化与创造性突破 ,包括概念空间探索(通过对抗网络探索新合金成分等) 、 范式转移预警(监控跨领域知识流、 识别技术革命前兆) 和自编程能力(自动模块设计、 代码编 写、 测试用例) 。 " 恨聪明 但没那么听话 " DeepseekV3 Deepseek R1 Deepseek r1 鞅的证 明 Deepseek10 积分 | 79 页 | 6.52 MB | 5 月前3
浙江大学-DeepSeek模型优势:算力、成本角度解读2025T 14.8 T 15T 模型规模 7B 、 67B 236B/ 激活 21B 671B/ 激活 37B 405B MoE 模 型 稠密 MoE 2+160 MoE 1+256 稠密 注意力技术 GQA MLA MLA N.A 上下文长度 4K 128K 128K 128K 训练成本 (GPU Hours) 300.6K 172.8K 2.788 M 30.84 M 发展历程:穷则战术穿插 Nr-1 Nr Router hll Top-K, OOO0 … … OOOO Input Hidden ut ■ 核心技术 DeepSeekMoE: 显者减少计算量 ( 穷则战术穿插 ) ■ 针对美国的算力禁令 ■ 核心思想: 1 共享专家 +256 路由专家,激活 8 个路由专家 ■ 共享专家: 捕获通用知识、降低知识冗余 "DeepSeekMoE:Towards Ultimate Expert Specialization in Mixture-of-Experts Language Models",2024 核心技术 DeepSeekMoE: 显著减少计算 量 DeepSeek 为代表的国内大模型咬住国外最先进大模型 ■ 模型性能:不要指望全面优势, “城头变幻大王旗” ■ 成本:低 ( 战术穿插10 积分 | 23 页 | 7.53 MB | 5 月前3
共 8 条
- 1
