2025年DeepSeek-R1Kimi 1.5及类强推理模型开发解读报告具备强大推理能力与长文本思考能力,继开源来备受关注。 ➢ DeepSeek R1-Zero 和 R1的出现再次证明了强化学习的潜力所在: ➢ R1-Zero 从基础模型开始构建,完全依赖强化学习,而不使用人类专家标注的监督微调(SFT); ➢ 随着训练步骤增加,模型逐渐展现出长文本推理及长链推理能力; ➢ 随着推理路径增长,模型表现出自我修复和启发式搜索的能力; 4 DeepSeek-R1 开创RL加持下强推理慢思考范式新边界 Effective than Scaling Model Parameters 8 DeepSeek-R1 技术剖析:DeepSeek-R1 Zero DeepSeek-R1 Zero: 无需监督微调SFT,纯强化学习驱动的强推理模型 DeepSeek-v3-Base (671B) DeepSeek-R1-Zero 基于规则的奖励 Rule-Based Reward 推理为中心的大规模强化学习 大规模推理为中心的强化学习,提升模型数学代码能力 RL驱动下自然涌现长文本推理能力 9 DeepSeek-R1 技术剖析:DeepSeek-R1 Zero DeepSeek-R1 Zero: 无需监督微调SFT,纯强化学习驱动的强推理模型 ➢ 奖励建模:基于规则的奖励 (Rule-Based Reward) : 准确率奖励 + 格式奖励 ➢ 准确率奖励 Accuracy Rewards: 判断答案是否是正确的10 积分 | 76 页 | 8.39 MB | 6 月前3
DeepSeek大模型赋能高校教学和科研2025进行微调或少 量微调的情况下完 成多场景任务 , 相当于 AI 完成 了“通识教育” 行业大模型 L1 是指那些针对特定行业或领域的大 模型 。 它们通常使用行业相关的 数 据进行预训练或微调, 以提高 在该 领域的性能和准确度,相当 于 AI 成 为“行业专家” 垂直大模型 L2 是指那些针对特定任务或场景的大 模型 。 它们通常使用任务相关的 数 据进行预训练或微调, 以提高 数据隐私与安全性 避免使用限制 定制化与灵活性 模型微调技术特点 ( 1 )领域针对性强: 经过微调的 模 型在特定领域的表现会有显著提 升 , 能够更好地理解和处理该领域 的专业 问题; ( 2 )模型适应性优化: 通过微调 可 以调整模型的参数 ,使其更符合 特定 任务的要求 ,提高输出的准确 性和稳 定性。 模型微调和本地知识库 使用海量数据进行预训练得到的基础 大模型 不 够精准。 解决方案: ( 1 )模型微调;( 2 )本地知识 库 模型微调技术要点 ( 1 )高质量的标注数据: 标注数 据 的质量直接影响微调的效果 , 需 要确 保数据标注的准确性和一致性。 ( 2 )合理的微调策略: 选择合适 的 微调算法和超参数 ,避免过拟合 或欠 拟合问题。 4.4 本地部署大模型方 案 在监督微调阶段 ,模型会学习一个 指令 - 响应( Instruction-Response10 积分 | 123 页 | 15.88 MB | 6 月前3
华为昇腾DeepSeek解决方案极致性能、稳定可靠的 AI 集群 • 深度开放的平台和生态 • 极致的端到端性能效率优化 关注便捷、易用、性价比的平台 • 开箱即用的强化学习套件 • 兼顾成本与性能的蒸馏 / 微调方 案 • 便捷的部署、敏捷业务上线 DeepSeek-V3-671B DeepSeek-R1-671B DeepSeek-R1-Distill-Qwen-32B DeepS +ISV/ 云,商业模式逐渐成熟 DeepSeek 能力提升成为各行业生产力工具,加速推理落地千行 百业 DeepSeek 催熟大模型落地技术, 降低推理部署门 槛 行业大模型 大量行业数据 监督微调 SFT 基础模型 Llama 、 Qwen 、 … 开箱即用的一体机,加速大模型应用落地 华为云 移动云 电信天翼云 联通云 京东云 基础模型 (DeepSeek/ Llama/Qwen/…) AWS 微软 Azure 部署更高效 月级调优 周 / 天级优 化 数据依赖降低 高质量数据 生成数据 算法依赖降低 高端人才 开源 + 蒸 馏 监督微调 SFT NVIDIA Hugging Face GitHub 更多行业 高质量数据生成 强化学习 主流云服务商已支持 DS 覆盖公 / 私有云部署 模型蒸馏 - 模型小型化0 积分 | 32 页 | 2.52 MB | 5 月前3
山东大学:DeepSeek 应用与部署邀请码: z0sI0urY 邀请链接: https://cloud.siliconflow.cn/i/z0sI0urY 通过创建 API key 调 用 模型微调工程 u 对话模型微调 u 生图模型微调 华为云模型微调 老师模型 模型蒸馏工程 DeepSeek : 推理模型 | 推理能力 蒸馏 DeepSeek 蒸馏模 型 学生模型 小模型:相当于一枚小学生 ,知识面非常有限 蒸馏、微调、 RAG 微调: 又叫精调 ,相当于学生意识到自己某门课有 短 板 ,然后自己找参考书恶补了一下 ,从而补上短 板 蒸馏: 是学生通过模仿老师的解题思路 ,达到和老 师 相似的知识水平。 RAG : 直译过来叫做“检索增强生成 ” 。 相当于这题我不会, 但是我有“小抄 ” , 我回 答的时候, 就看一眼小抄, 然后再综合我脑子里的已有知识, 进行回答。 蒸馏、微调、 RAG10 积分 | 79 页 | 6.52 MB | 5 月前3
英特尔-工业人工智能白皮书2025年版数据截然不同的任务。这使得大模型能应用于多种任 务和场景,具有广泛的适用性。 4. 灵活性和可定制性。大模型通常具有灵活的架构和可定制的参数,可以根据特定需求对通用大模型进行定制和优化。通过 微调 (Fine-tuning) 技术,预训练的大模型可以快速适应新的任务和数据集,而无需从头开始训练。此外,还可以通过添 加新的层或修改现有层的结构,来扩展大模型的功能和性能。 1.3 工业大模型 传统的机器视觉检测算法,无法满足对 多种缺陷的检测需求。 采用大模型结合机器视觉成像技术,首先使用大规模无标注图像对大模型预训练,然后再针对晶圆缺陷检测任务, 在标注的晶圆缺陷图像数据集上进行微调,优化模型对微小缺陷的识别能力。最终经过优化的大模型,在晶圆缺陷 检测任务上,最小能检出 0.1 微米级别的缺陷尺寸,检测精准度需高于 99.5%,检测节拍大多需达 300 片/分钟以 上,检测 AS 功能,并根据需要支持其他加速器。由于 配备了增强的内核、更大的内存带宽和强大的矩阵引擎,采用性能核的英特尔® 至强® 6 处理器可提供充足的算力,以支持 中小规模生成式人工智能模型的推理、微调和检索增强生成 (RAG) 用例。此外,针对英特尔® 至强® 处理器的优化已集成到 TensorFlow* 和 PyTorch* 等在内的流行深度学习框架的主流发行版。 优化通用工作负载的性能0 积分 | 82 页 | 5.13 MB | 5 月前3
共 5 条
- 1
