2025年DeepSeek-R1Kimi 1.5及类强推理模型开发解读报告技术剖析:DeepSeek-R1 Zero DeepSeek-R1 Zero: 无需监督微调SFT,纯强化学习驱动的强推理模型 DeepSeek-v3-Base (671B) DeepSeek-R1-Zero 基于规则的奖励 Rule-Based Reward 推理为中心的大规模强化学习 Large-Scale Reasoning-Oriented RL 大规模推理为中心的强化学习,提升模型数学代码能力 RL驱动下自然涌现长文本推理能力 技术剖析:DeepSeek-R1 Zero DeepSeek-R1 Zero: 无需监督微调SFT,纯强化学习驱动的强推理模型 ➢ 奖励建模:基于规则的奖励 (Rule-Based Reward) : 准确率奖励 + 格式奖励 ➢ 准确率奖励 Accuracy Rewards: 判断答案是否是正确的 ➢ 格式奖励Format Rewards: 规劝模型生成答案的过程是和 ➢ 没有使用Reward model 需要大量的计算资源,可能会复杂化整个流程 ➢ 训练模板:选择最简单的 Thinking Process,直接观察到最直接的RL过程下的表现 基于规则的奖励 (Rule-Based Reward) : 准确率奖励 + 格式奖励 10 DeepSeek-R1 技术剖析:DeepSeek-R1 Zero DeepSeek-R1 Zero: 无需监督微调SFT,纯强化学习驱动的强推理模型10 积分 | 76 页 | 8.39 MB | 9 月前3
山东大学:DeepSeek 应用与部署Relative Policy Optimization 强化学习让智能体( Agent )在环境 ( Environment )中不断尝试、学习 ,并优化自己 的策略( Policy ) ,最终获得最大化的奖励 ( Reward )。 DeepSeek : 技术创新—推理模型 | RL DeepSeek 应用场 景 DeepSeek 的能力层级 • 1. 基础能力层10 积分 | 79 页 | 6.52 MB | 9 月前3
AI跃迁派:2025年DeepSeek零基础完全指南多头潜在注意力:像多线程处理信息,显存占用降低 50%,适合普通电脑运 行 ⚫ MoE 混合专家系统:遇到问题自动召唤“专业团队”,比如数学题找数学专家模 块,写诗找创意模块 ⚫ 强化学习驱动:通过“试错+奖励”机制自我进化,类似游戏 AI 自学通关 2.划时代意义:中国 AI 的破局之战 DeepSeek 的诞生不仅是技术突破,更是国家战略级的里程碑: 成本革命: ⚫ 训练成本仅10 积分 | 21 页 | 1.01 MB | 9 月前3
共 3 条
- 1
