山东大学:DeepSeek 应用与部署RL DeepSeek 应用场 景 DeepSeek 的能力层级 • 1. 基础能力层 多模态数据融合与结构化理解 ,包括跨模态语义对齐(文本、 图像、 音频、 视频、 代 码、传感器数据统一语义) 和动态数据治理(解决数据缺失、 噪音干扰、 概念飘逸等) , 支持 200 多 种数据格式自动解析。 • 2. 中级能力层 领域问题建模与复杂推理 ,包括领域自适应学习(建立医、 因果推理引擎(建立因果图模型) 和多目标优化决策(求解帕 累托最有解) 。 • 3. 高级能力层 复杂系统建模与自主决策 ,包括数字孪生仿真系统(构建物理于数字融合虚拟环境 模拟天气等) 、 多智能体协同优化(将每个个体作为智能体通过联邦学习模拟群体行为) 和元认 知调 控机制(实施监控自身决策、 动态分配资源、 自动触发行为) 。 • 4. 终极能力层 自主进化与创造性突破 , 情感分析和多语言翻译。 • 3. 对话交互类 :角色扮演、多轮对话、 反问引导。 • 4. 技能应用类 :数学计算、代码解释、 逻辑推理。 • 5. 个性化定制类 :风格迁移、知识库绑 定、偏好记忆。 • 6. 系统操作类:模式切换、资源优化、 记 忆管理。 • 7. 知识查询类:事实核查、概念解释、 溯 源检索。 • 8. 教育与研究类:题目生成、论文润色、10 积分 | 79 页 | 6.52 MB | 5 月前3
DeepSeek大模型赋能高校教学和科研2025) 、 DeepSeek 、文心一言 (百度)等 多模态大模型 是指能够处理多种不同类型数据的大模型,例如 文本 、 图像 、音频等多模态数据 。这类模型结 合 了 NLP 和 CV 的能力, 以实现对多模态信息 的综合 理解和分析,从而能够更全面地理解和 处理复杂 的数据 。代表性产品包括 DingoDB 多模向量数据 库(九章云极 DataCanvas ) 海量的开放数据与具有巨量参 数的 深度学习算法,在大规模无 标注数 据上进行训练, 以寻找特 征并发现 规律 ,进而形成可“举一 反三” 的强 大泛化能力 ,可在不 进行微调或少 量微调的情况下完 成多场景任务 , 相当于 AI 完成 了“通识教育” 行业大模型 L1 是指那些针对特定行业或领域的大 模型 。 它们通常使用行业相关的 数 据进行预训练或微调, 以提高 在该 领域的性能和准确度,相当 n Gemini Gemini 是谷歌发布的大模型 , 它能够同时处理多种类型的数据和任务 , 覆盖文本、 图像、 音频、 视频等多个领域。 Gemini 采用了全新的架构 ,将多模态编码器和多模态解码器两个主要组件结合在一起 , 以提供最佳结果 Gemini 包括三种不同规模的模型: Gemini Ultra 、 Gemini Pro 和 Gemini Nano , 适用于不同任务和设备。10 积分 | 123 页 | 15.88 MB | 6 月前3
从智慧教育到智慧课堂:理论、规范与实践有效联接和利用学习 社群进行沟通和交流 提供支持 无缝切换 无缝切换 联接社群 系统集成 虚实融合 多终端访问 系统集成 遵循技术标准,跨级、跨 域教育服务平台之间实现 数据共享、系统集成 虚实融合 通过增强现实等技术 实现物理环境与虚拟 环境的无缝融合 多终端访问 支持任何常用终端设备无缝 连接到各种教育信息系统, 无缝获取学习资源与服务 联接社群 学习者的多个学习终 云学习环境 • 保证学习数据的永 不丢失,为学习分 析提供数据支持 存储学习过程 数据 28 泛在网 络 泛在网络是通信网、互联 网、物联网的高度协同和 融合,将实现跨网络、跨 行业、跨应用、异构多技 术的融合和协同。 29 泛在网 络 创 新 学习、生活与工作的连通 学校教育、家庭教育和社会教育的 连通; 手机、平板、 PC 、学习机、电视 等各种终端设备的连通。 三 方 连 享受个性化定制的资源和服务 发掘自己的兴趣爱好 挖掘自己的潜能 学习过程更加轻松高效 学习者 34 智 慧 慧 学 习 框 架 泛在网络 物联网 感知需求 分析需求 发 现 所 需 提 供 资 源 和 服 务 信息、数据、 服务支持 环境、终端 外部支持 智慧课堂:智慧教育主阵地 课堂信息化演变过程 Classroom 2.0 基本特征 交互性 智能化 网络化 虚拟化 未来教室10 积分 | 74 页 | 10.39 MB | 6 月前3
AI跃迁派:2025年DeepSeek零基础完全指南公司研发,定位为“认知智能引擎”。简单来说,它是一个能像人类一样思考、学习和解 决问题的超级 AI 工具。 核心能力: ⚫ 复杂推理:像学霸解数学题一样处理逻辑难题(R1 模型) ⚫ 多模态融合:能理解文字、图片、文件等多种信息(未来还将支持语音和视频) ⚫ 超长上下文:一口气读完 3-4 万字的长文档(64Ktoken 容量) 技术架构: ⚫ MLA 多头潜在注意力:像多线程处理信息,显存占用降低 粘贴 Excel 销售数据→输入“分析 Q4 各品类销售额占比” 2.追加“生成可视化代码(Pythonmatplotlib)” 效果:10 分钟完成原本需 1 天的数据分析报告 ②多 AI 联合作战 指令模板: “先让 DeepSeekR1 制定《智能手环市场调研方案》,再用 GPT-4 生成问卷文案,最后 用 Claude 整理数据图表” 效率提升:全流程时间缩短 1.上传历年工作文档/读书笔记/会议记录 2.输入“构建知识图谱,关联 2024-2025 年市场策略”→生成可交互的 3D 知识网络 ⚫ 企业智慧大脑: 销售数据+客服录音+生产日志多源融合→自动生成经营决策建议( ②流程自动化矩阵 ⚫ 智能工作流: 邮件接收→AI 提取关键信息→自动创建待办事项→生成执行方案→推送进度提醒 ⚫ 跨平台协作: Excel10 积分 | 21 页 | 1.01 MB | 6 月前3
华为昇腾DeepSeek解决方案推理加速:预加载,动态批处理等 模型、数据、工具链、部署全开源 蒸馏技术使能第三方模型性能 DeepSeek V3 :实现极致性能,稀疏 MOE 提质 降本 技术创新 硬件级、算法级、架构级、工程级、开 源生态 5 大技术创新,轰动全球 低成本 绕过 CUDA 挖掘 FP8 硬件潜力, MOE 和 MLA 技术实现不到 10% 的 成本方案 ~150M$ 5.57M$ DeepSeek–V3 ,强化训练信号 • 优化模型表达能力 ,提升 next-token 的预测效果 • 可参考投机采样改造 MTP 模块 ,加速推理效率 MTP : Multi-Token Prediction 多 token 预测提升模 型效果 • MTP 模块仅在训练中使用,提升模型训练效果,推理阶段可以不使用 MTP 模块,基础模型能够独立完成正常推 理 • 参考投机采样, MTP 模块也可以被重新配置用于 FP16/BF16 1 前 1 后单流水 需要裁判模型评估 1 次 1token 预测 MHA/GQA 分组共享减少缓存 GPT4 16 专家选 2 FP8 混合精度 双向流水并行 新老策略组队评估 1 次多 Token 预 测 MLA 低秩压缩减少缓存 DeepSeekMoE 更稀疏 256 选 8+1 训练精度 PP 并行算法 强化学习 Attention MOE Token 预测 业界0 积分 | 32 页 | 2.52 MB | 5 月前3
2025年DeepSeek-R1Kimi 1.5及类强推理模型开发解读报告(DS-R1 \ Kimi-1.5 \ o-series) ➢ 蒸馏 vs. 强化学习驱动:国内外现有各家技术路线对比分析及Takeaways ➢ PRM & MCTS 的作用 ➢ 从文本模态到多模态 ➢ 其他讨论:Over-Thinking 过度思考等 ➢ 未来方向分析探讨 ➢ 模态穿透赋能推理边界拓展:Align-DS-V ➢ 合成数据及Test-Time Scaling: 突破数据再生产陷阱 DeepSeek-R1 开创RL加持下强推理慢思考范式新边界 ➢ 得益于强大的推理能力与长文本思考能力,DeepSeek R1在复杂任务上表现卓越,成为开源领域的又 一里程碑,标志着开源社区在与闭源大模型(如 OpenAI o1 系列)的竞争中迈出了关键性一步。 ➢ DeepSeek-R1 在数学代码任务上表现突出 ➢ Deepseek R1在AIME2024上获得了79.8%的成绩,略高于 的潜力并确保训练稳定性,DeepSeek R1 的训练中采用了四阶段的交替迭代 流程:“监督微调(SFT)→ 强化学习(RL)→ 再次 SFT → 再次 RL”,有效解决了传统强化学 习模型在冷启动、收敛效率和多场景适应性方面的瓶颈。 ➢ 强大的自验证和长链推理能力:并非预先设定好的,而是在RL训练中自主涌现出来的 ➢ 自验证是指模型在生成最终答案之前,会先主动地验证自己的中间推理步骤是否正确。这就 像10 积分 | 76 页 | 8.39 MB | 6 月前3
英特尔-工业人工智能白皮书2025年版和排程,最大程度地减少产线空闲时间,提高产品交 付准时率。 在生产资源分配方面,通过深度学习和大数据分析, AI 系统能够根据实时数据预测生产任务,自动调整 生产参数,并合理地分配人力、设备、物料等生产资 源,提高资源利用率,确保生产线始终保持在最佳工 作状态,提高生产效率。 在生产过程监控和优化方面,AI 算法通过分析生产 线上的各种运行状态反馈数据和工艺参数,能够预 测及发现潜在问题,并自动调整参数,优化产线运 Model),是指具有大量参数和复杂结构的机器学习模型,能够处 理海量数据、完成各种复杂的任务,如自然语言处理、计算机视觉、语音识别等。大模型通常包括大语言模型 (LLM)、视觉 大模型 (CV)、多模态大模型等各种类型。 大模型通过训练海量数据来学习复杂的模式和特征,具有更强大的泛化能力,可以对未见过的数据做出准确的预测,能够处 理更加复杂的任务和数据。 展开来讲,大模型技术有以下几项基本特征: 个方向,是目前应用探索最多的领域。工业大模型经过一年多的发展,目前 总体处于小规模商业应用落地阶段。 工业大模型凭借其卓越的理解、生成和泛化能力,通过与工业领域的深度融合,有望为工业领域带来 “基础模型 + 各类应用” 的新范式。因此,工业大模型的成功落地,离不开针对特定行业的丰富现场经验和深厚的行业 know-how 能力。 第四,多模态分析能力,由传统单一格式的工业数据 处理,转化为多格式数据综合转换分析。0 积分 | 82 页 | 5.13 MB | 5 月前3
共 7 条
- 1
