积分充值
 首页  上传文档  发布文章  登录账户
维度跃迁
  • 综合
  • 文档
  • 文章

无数据

分类

全部人工智能(8)技术工具(8)

语言

全部中文(简体)(8)

格式

全部PPT文档 PPT(5)PDF文档 PDF(3)
 
本次搜索耗时 0.031 秒,为您找到相关结果约 8 个.
  • 全部
  • 人工智能
  • 技术工具
  • 全部
  • 中文(简体)
  • 全部
  • PPT文档 PPT
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 英特尔-工业人工智能白皮书2025年版

    方向转型升级,打造依托于人工智能、大 数据、云计算等现代信息技术的新质生产力。 工业 AI 和大模型的应用,已经渗透到工业生产的产品设计、企业流程管理规划、智能化生产、设备预 测性维护、供应链优化、创新服务、绿色制造、智能客服等众多环节,它通过处理和分析海量工业数 据,帮助企业在上述各个环节中做出最优的智能化决策,从而在多个环节全方位实现提质、增效、降 本,增强竞争力。 在日趋激烈的工 .........................................................................35 2.2.4 英特尔® CVOI(工业机器视觉优化参考实现)...........................................................................36 目录 04 03 2.3 行业观察 01 02 01 工业人工智能 (AI) 行业观察 工业 AI,是 AI 技术在工业领域的应用,它通过机器学习、深度学习、计算机视觉等先进的计算智能方法,实现对工业生产 过程的优化和智能化,最终帮助企业提高生产效率、降低成本、提升产品质量,实现数字化转型。 2023 年 12 月,由信通院牵头、多家单位联合编制的《工业大模型技术应用与发展报告》指出,AI 与大模型将加速赋能新型
    0 积分 | 82 页 | 5.13 MB | 5 月前
    3
  • ppt文档 华为昇腾DeepSeek解决方案

    AI 芯片: NV 、 AMD • DS 对强化学习的创新使用, 可以让大模型便捷的获 得 通用性 + 专用性, 可以满足各应用场景需求 • DS 对通过从模型结构到训推全流程的极致工程优化, 大幅提升 AI 的计算效率, 提升模型落地经济性 • 中国 AI 公司首次以关键创新贡献者的身份加入到全 球 AI 竞争中,冲击美国 AI 霸权 • 打破 NV+OpenAI 的资金、技术、人才的垄断,全球 58.08 天) 性能优 数学、科学和代码等领域领先业界, 成为业界公认的 LLM 的领先模型 来源: DeepSeek 模型测试数据 & 互联网 硬件级优化 绕过 GUDA 进行 PTX 编程 计算与通信优化,性能提升 30% GRPO :群体进化的智慧筛选器 自我验证机制: AI 的 " 错题本系 统 " 混合专家模型的 " 智能路由器“ 多头潜在注意力 MLA • 每个 MTP 模块计算对应的交叉熵损失函数 • 多个 MTP 模块的损失函数加权平均得到最终训练目标 ③ 关键作用 • 提升每批训练数据的使用效率 ,强化训练信号 • 优化模型表达能力 ,提升 next-token 的预测效果 • 可参考投机采样改造 MTP 模块 ,加速推理效率 MTP : Multi-Token Prediction 多 token 预测提升模
    0 积分 | 32 页 | 2.52 MB | 5 月前
    3
  • ppt文档 山东大学:DeepSeek 应用与部署

    Optimization GRPO : Group Relative Policy Optimization 强化学习让智能体( Agent )在环境 ( Environment )中不断尝试、学习 ,并优化自己 的策略( Policy ) ,最终获得最大化的奖励 ( Reward )。 DeepSeek : 技术创新—推理模型 | RL DeepSeek 应用场 景 DeepSeek ,包括领域自适应学习(建立医、 教育、 金融垂直应用于 模型) 、 因果推理引擎(建立因果图模型) 和多目标优化决策(求解帕 累托最有解) 。 • 3. 高级能力层 复杂系统建模与自主决策 ,包括数字孪生仿真系统(构建物理于数字融合虚拟环境 模拟天气等) 、 多智能体协同优化(将每个个体作为智能体通过联邦学习模拟群体行为) 和元认 知调 控机制(实施监控自身决策、 动态分配资源、 反问引导。 • 4. 技能应用类 :数学计算、代码解释、 逻辑推理。 • 5. 个性化定制类 :风格迁移、知识库绑 定、偏好记忆。 • 6. 系统操作类:模式切换、资源优化、 记 忆管理。 • 7. 知识查询类:事实核查、概念解释、 溯 源检索。 • 8. 教育与研究类:题目生成、论文润色、 实验设计。 • 9. 多模态处理类: 图文互译、表格解析、
    10 积分 | 79 页 | 6.52 MB | 5 月前
    3
  • pdf文档 2025年DeepSeek-R1Kimi 1.5及类强推理模型开发解读报告

    DeepSeek-R1 技术剖析:DeepSeek-R1 Zero DeepSeek-R1 Zero: 无需监督微调SFT,纯强化学习驱动的强推理模型 ➢ 推理为中心大规模强化学习:组相对策略优化(GRPO)+ 瞄准 Reasoning 推理任务 ➢ 自我迭代提升Self-Evolution:随着训练步数的增长,模型的thinking response length 逐 渐增加(对应着 test-time DeepSeek-R1 Zero的关键启示 ➢ 传统RLHF背景下,SFT通常被认为是不可或缺的一步,其逻辑先用大量人工标注的数据来让模型 初步掌握某种能力(如对话或者语言风格),然后再用RL来进一步优化性能 ➢ DeepSeek-R1 系列跳过对于大规模人工标注数据的依赖 ➢ 无需构建和维护高质量的SFT数据集,而是让模型直接在RL环境中进行探索 ➢ 类比:初学者在没有老师指导的情况下,通过不断的尝试和错误来掌握一门新的技能。 高质量Token上训练)(基座模型知识帮助突破推理上界,也有一些 工作利用小模型复现 Aha Moment 得益于大规模RL和高质量推理数据); ➢ 大规模强化学习加持:GRPO 对于强化学习训练的优化; ➢ 规则化奖励:绕过奖励攻陷问题,但是得益于推理问题可以进行自动化标记和验证 (Self-Automated Verification and Annotation),这是与一般聊天和写作请求任务不同的;
    10 积分 | 76 页 | 8.39 MB | 5 月前
    3
  • pdf文档 AI跃迁派:2025年DeepSeek零基础完全指南

    混合专家系统:像医院分诊台,遇到数学题自动转接“数学博士”,写诗转接 “文学教授” ⚫ MLA 多头潜在注意力:让 AI 像章鱼同时处理多任务,普通电脑也能流畅运行 ⚫ DualPipe 通信技术:优化 AI“脑细胞”之间的协作效率,响应速度提升 50% 2.功能模块:你的私人 AI 军团 DeepSeek 通过三大功能模块,满足从日常生活到专业领域的全场景需求: 模块 1:基础版(V3)——效率倍增器 的提示词设计遵循“目标导向+场景适配”原则,掌握以下技巧可让 AI 输出质 量提升 300%: ①四要素提问法 公式:身份+场景+目标+限制条件 -案例: ⚫ 职场:“作为跨境电商运营(身份),要优化亚马逊产品标题(场景),要求包含关 键词‘ergonomicofficechair’且字符≤200(限制),参考竞品 BestSeller 前十的标题 结构(目标)” ⚫ 教育:“高三学生(身份)复习导数压轴题(场景),需要 忽略背景 错误:“推荐旅游城市”→可能推荐南极科考站 修正:“预算 5000 元/3 天/亲子游,推荐 5 个国内城市并说明交通和住宿方案” 4.专业术语滥用 错误:“用 MoE 架构优化输出”→普通人难以理解 修正:“让不同专家模块共同解决这个问题” 5.过度依赖 错误:直接使用 AI 生成的医学诊断建议 修正:要求“提供相似病例和检查建议,需医生复核”
    10 积分 | 21 页 | 1.01 MB | 5 月前
    3
  • ppt文档 DeepSeek大模型赋能高校教学和科研2025

    本地部署 大模型 4.3 为什么需要本地部署大模 型 离线与高效使用 成本与资源优化 数据隐私与安全性 避免使用限制 定制化与灵活性 模型微调技术特点 ( 1 )领域针对性强: 经过微调的 模 型在特定领域的表现会有显著提 升 , 能够更好地理解和处理该领域 的专业 问题; ( 2 )模型适应性优化: 通过微调 可 以调整模型的参数 ,使其更符合 特定 任务的要求 ,提高输出的准确 数据集用于训练模型理解任务指令并生成符合预期的响应 时效性问题 对知识更新频繁的领域 ,微调后的模型可能很快会过时 , 需要不断重新训练 在微调完成后 , 部分高级模型还会使用强化学习进行优化。 例如 , ChatGPT 和 Claude 使用 人类 反馈 强化学习( RLHF ) 让模型的回答更符合用户期望 ,更好地选择符合人类偏好的答案 数据准备成本高 需要收集、 整理和标注大量特定领域的数据 的设备上本地运行 DeepSeek- R1 、 V3 的 671B 满血版。 其预处理速度最高可达 286 tokens/s ,推理生成速度最高能达 到 14 tokens/s 。 甚至有开发者借助这一优化技术 ,在 3090 显卡和 200GB 内存的配置下 ,使 Q2_K_XL 模型的推理速度达到 9.1 tokens/s , 实现了千亿级模型的 “家庭化” 运行 传统方案: 8 卡 A100 服务器成本超百万元
    10 积分 | 123 页 | 15.88 MB | 5 月前
    3
  • ppt文档 从智慧教育到智慧课堂:理论、规范与实践

    台湾桃源县 “ 智慧台湾 U 桃园 计划” 从 e 化教育向 u 化 教育(泛在教育) 美国 IBM 智慧教育解决 方案:教育数据的 收集、管理与分析, 为学习者提供独特 的学习体验,教学 制度优化 7 智慧教 育 智 慧 教 育 什么是智慧教育? 在信息化基础之上建构的信息时代的教育新秩序,是信 息时代的教育新形态、教育的“新常态”,是信息化元素充分 融入教育以后,在“时代催化剂”的作用下教育发生的“化学反 Linux 或者 Windows 终端服务:  按比例具有低成本优势  用户分享式操作系统  用户不具有管理者权限  低成本的弱功能客户机 Windows 流提供如下功能:  图形和视频优化  低能源服务器架构  需要功能强大弱功能客户机 智慧课堂: IBM 桌面虚拟化的三种实体模型 刀片或传统 Servers 智慧课堂:基于云计算的虚拟计算 WFU NCA&T OC12 未来教室环境的支撑技术 环境创设:利用技术手段,为基于 未来教室的学习提供虚拟学习环境, 增强体验感。 课室灯光:更加绿色与环保 课室黑板:绿色板 智慧课堂的类型 实用型未来教室  指在传统教室基础上,改进优化教室的物理环境,增添适量数字 化设备,初步实现传统教室的数字化、多功能化的一种未来教室 类型。  优势  环境简易变革,实现教学理念及方式大幅改进  低投入,高产出  使用简单,师生能够快速适应新环境
    10 积分 | 74 页 | 10.39 MB | 5 月前
    3
  • ppt文档 浙江大学-DeepSeek模型优势:算力、成本角度解读2025

    光刻机: 2024 年限制荷兰 ASML 出口 7nm 光刻机到 中国 时代背景:算力卡脖子 deepsee k DeepSeek 等国内大模型的“上甘岭”时刻 Al 算法与系统协同深度优化 反斜面坑道 ( 战术穿插 ) 范弗利特弹药量 ( 地毯轰 炸 ) 大资金、大算力、大模型 “ 大模型” 》
    10 积分 | 23 页 | 7.53 MB | 5 月前
    3
共 8 条
  • 1
前往
页
相关搜索词
英特特尔英特尔工业人工智能人工智能白皮皮书白皮书2025年版华为DeepSeek解决方案解决方案山东东大大学山东大学应用部署R1Kimi1.5及类推理模型推理模型开发解读报告AI跃迁基础完全指南赋能高校教学科研智慧教育课堂理论规范实践浙江浙江大学优势算力成本角度
维度跃迁
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传,所有资料均作为学习交流,版权归原作者所有,并不作为商业用途。
相关费用为资料整理服务费用,由文档内容之真实性引发的全部责任,由用户自行承担,如有侵权情及时联系站长删除。
维度跃迁 ©2025 | 站点地图 蒙ICP备2025025196号
Powered By MOREDOC PRO v3.3.0-beta.46
  • 我们的公众号同样精彩
    我们的公众号同样精彩