英特尔-工业人工智能白皮书2025年版边缘 AI 驱动, 助力新质生产力 英特尔® 工业人工智能白皮书 2025 年版 Intel® Industrial AI Playbook 2025 Edition 编委会: 主编:刘 俊、马小龙、朱永佳 编委:方辛月、高 畅、高杨帆、胡 杨、刘 波、吕晓峰、邱丽颖、单 娜、张 恒、张心宇 * 编辑按姓名首字母排序 人工智能 (AI) 技术的快速发展掀起了新一轮工业革命浪潮,通用大模型的出现让 AI 技术从专用化迈向 了通用化。AI 技术正在步入工业领域的千行百业,帮助企业实现从传统的劳动密集型、资源密集型企 业,向技术密集型、知识密集型的高端化、智能化、绿色化方向转型升级,打造依托于人工智能、大 数据、云计算等现代信息技术的新质生产力。 工业 AI 和大模型的应用,已经渗透到工业生产的产品设计、企业流程管理规划、智能化生产、设备预 测性维护、供应链优化、创新服务、绿色制造、智 化流程和最佳实践,共同构建开放、协同的工业 AI 生态系统,推动制造业向智能制造转型升级,赋能 新质生产力。 — 张宇博士 英特尔中国区网络与边缘事业部首席技术官 前言 目录 01 02 工业人工智能 (AI) 行业观察 .......................................................01 1.1 工业 AI — 市场规模与增长潜力 ..0 积分 | 82 页 | 5.13 MB | 5 月前3
DeepSeek大模型赋能高校教学和科研20251. 人工智能发展简史 2. 人工智能思维 3. 大模型: 人工智能的前沿 4. 高校本地部署 DeepSeek 大模 型 5. AIGC 应用与实践 6. 基于大模型的智能体 7. AI 赋能高校科研 8. AI 赋能高校教学 目录 厦门大学大数据教学团队作品 2025 年 2 月 1.1 图灵测试 1.2 人工智能的诞生 1.3 人工智能的发展阶段 人工智能的发展阶段 1.4 未来人工智能发展的五个阶 段 1. 人工智能发展简 史 厦门大学大数据教学团队作品 1950 年 , “计算机之父”和“人工智能之父”艾伦 · 图灵( Alan M. Turing ) 发表了论文《计算机器与智能》 ,这篇论文被誉 为人工智能科学的开山之作。 在论文的开篇 , 图灵提出了一个引人深思的问题: “机器能思考吗? ”。这个问题激发了人们 无尽的想象 , , 同时也奠定了人工智能的基本概念和雏形 在这篇论文中 ,图灵提出了鉴别 机 器是否具有智能的方法 ,这就是 人 工智能领域著名的“图灵测试”。 如图所示 ,其基本思想是测试者 在 与被测试者(一个人和一台机 器) 隔离的情况下 ,通过一些装 置(如 键盘)向被测试者随意提 问。进行 多次测试后 ,如果被测 试者机器让 平均每个测试者做出 超过 30% 的误 判 ,那么这台机器10 积分 | 123 页 | 15.88 MB | 5 月前3
浙江大学-DeepSeek模型优势:算力、成本角度解读20251943 ■ 大型机时代:数字化未开始,算力需求潜力未发掘 大型机时代 1940- 1980 计算机算力的发展 大型机时代 PC 时 代 云计算时代 人工智能时代 1940- 1980- 2000- ■ PC 时代:一个应用只需一台电脑,算力够 ■ 云计算时代:应用需要超过一台机器的算力,算力基本够 ■ 人工智能时代:算力开始不足,需大量高性能 Al 加速器 计算机算力的发展 人工智能大模型算力估计 ■ 人工智能大模型算力估计 ■ 1, 数据量 ( D ) >15* 模型参数量 ( N ) ■ 万亿模型 (N )=1000*109=1012 ■ 成本 华为 910B 320T=3.2*101 4 32GB 240 GB/s 较好 无 12 万 英伟达 H800 1000T=1015 80GB 900 GB/s 好 有 25 万 人工智能计算平台成本估计 算力 存力 运力 ■ 大模型扩展规律 ( 资本非常喜欢确定性故事 ) ■ 算力:算力越大 (X 轴 ), 模型效果越好 (Test Loss 小 ) ■ 数据集:数据集越大10 积分 | 23 页 | 7.53 MB | 5 月前3
2025年DeepSeek-R1Kimi 1.5及类强推理模型开发解读报告Zero DeepSeek-R1 Zero的关键启示 ➢ 传统RLHF背景下,SFT通常被认为是不可或缺的一步,其逻辑先用大量人工标注的数据来让模型 初步掌握某种能力(如对话或者语言风格),然后再用RL来进一步优化性能 ➢ DeepSeek-R1 系列跳过对于大规模人工标注数据的依赖 ➢ 无需构建和维护高质量的SFT数据集,而是让模型直接在RL环境中进行探索 ➢ 类比:初学者在没有老师指导 包括各个年级的科学问题,这些问题需要图形理解和推理能力;还包括需要视觉感知和推理能 力的位置猜测任务;以及涉及复杂图表理解的数据分析任务等。这些数据集提升了模型在真实世界场景中的视 觉推理能力。 ➢ 合成视觉推理数据 是人工生成的,包括程序化创建的图像和场景,旨在提高特定的视觉推理技能,例如理解 空间关系、几何模式和物体交互。这些合成数据集提供了可控环境,用于测试模型的视觉推理能力,并且可以 无限生成训练样本。 ➢ ➢ DS-R1 和 Kimi K1.5 都没有进行明确的MCTS和PRM尝试 ➢ PRM 的一些挑战: ➢ 决定当下的某一步是否正确是一个很难的task, 自动化标注难以产生很好的结果, 但是用人工标注又难以scaling up ➢ Model-Based PRM 可能会引入 reward hacking, 重新训练会让训练变得更加复杂 ➢ PRM还是更适合于rerank top-N responses10 积分 | 76 页 | 8.39 MB | 5 月前3
AI跃迁派:2025年DeepSeek零基础完全指南零基础完全指南》 公众号“AI 跃迁派”出品 一、DeepSeek 全景认知 1.颠覆性定义:人人都能用的认知引擎 DeepSeek(深度求索)是中国首个全栈开源的大语言模型,由杭州深度求索人工智能 公司研发,定位为“认知智能引擎”。简单来说,它是一个能像人类一样思考、学习和解 决问题的超级 AI 工具。 核心能力: ⚫ 复杂推理:像学霸解数学题一样处理逻辑难题(R1 模型)10 积分 | 21 页 | 1.01 MB | 5 月前3
共 5 条
- 1
