积分充值
 首页  上传文档  发布文章  登录账户
维度跃迁
  • 综合
  • 文档
  • 文章

无数据

分类

全部人工智能(35)大模型技术(35)

语言

全部中文(简体)(35)

格式

全部DOC文档 DOC(13)PDF文档 PDF(12)PPT文档 PPT(10)
 
本次搜索耗时 0.038 秒,为您找到相关结果约 35 个.
  • 全部
  • 人工智能
  • 大模型技术
  • 全部
  • 中文(简体)
  • 全部
  • DOC文档 DOC
  • PDF文档 PDF
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • ppt文档 人工智能技术及应用(56页PPT-智能咨询、智能客服)

    质押给恒丰银行无锡分行 2 、江苏阳光以法人股 3500 万股向中国 农 业银行江阴市支行贷款 4200 万元, 并向 江阴支行提供质押担保 3 、江苏阳光为控股子公司宁夏阳光硅业 有限公司提供担保 4 、海润光伏用价值 1000 万元房产为江 苏 阳光向中国银行江苏分行提供连带责 任担 保 案例:某国有银行企业风险预警  担保关系 担保关系识别 用智慧发现信息价值 Discover 三联商社、中关村、山东金泰 厦门当代系 福建 王春芳 国旅联合、当代东方、厦华电子 武汉当代系 湖北 艾路明 三特索道、人福医药、当代明城 横店系 浙江 横店东磁、普洛药业、英洛华 精功系 浙江 金良顺 精功科技、精工钢构、会稽山 华夏系 河北 王文学 华夏幸福、玉龙股份、黑牛食品 银亿系 浙江 熊续强 银亿股份、康强电子、河池化工 广汇系 新疆 孙广信 广汇汽车、广汇能源、 ST 兴业 汇垠系 明科、华资实业、西水股份 杉杉系 浙江 郑永刚 艾迪西、 ST 江泉、杉杉股份 中植系 北京 解直锟 美尔雅、 ST 宇顺、铨银高科、 ST 华泽 宝能系 广东 姚振华 万科 A 、中炬高科、韶能股份、南玻 A 鹏欣系 上海 姜照柏 国中水务、鹏欣资源、大康农业 万向系 浙江 鲁冠球 万向钱潮、顺发恒业、承德露露、万向 德农 茂业系 广东 黄茂如 茂业通信、茂业商业、 ST 商城 4 、关联关系图
    10 积分 | 55 页 | 5.54 MB | 1 天前
    3
  • word文档 AI大模型人工智能数据训练考评系统建设方案(151页 WORD)

    项目背景与目标 随着人工智能技术的快速发展,数据训练已成为 AI 模型开发 的核心环节。然而,当前数据训练过程缺乏系统化的评估与考核机 制,导致模型质量参差不齐,训练效率难以量化,资源分配不够优 化。为解决这些问题,有必要构建一套全面的人工智能数据训练考 评系统。 项目的核心目标在于建立标准化的数据训练考评体系,提升 AI 模型开发的质量与效率。具体目标可分为以下几个维度: - 建立可 训练效果的持续跟踪与改进 项目将在现有技术基础上,整合多方资源,采用模块化设计思 路,确保系统具有良好的扩展性和适应性。通过本项目的实施,将 建立起一套科学、规范、高效的人工智能数据训练考评体系,为 AI 技术的进一步发展提供有力支撑。 1.1 项目背景 随着人工智能技术的迅猛发展,其在各行各业的应用日益广 泛,尤其在数据驱动的决策支持、自动化流程优化以及智能分析等 领域表现尤为突出。 采用模块化设计,支持随业务增长进行功 能扩展和性能优化,确保系统能够长期稳定运行。 5. 降低运维成本: 通过自动化部署和监控机制,减少人工干预, 降低系统运维成本,同时提升系统的可靠性和可维护性。 为实现上述目标,系统将采用以下技术架构: - 数据处理模块: 集成了高效的数据清洗和标注工具,支持批量处理 和实时更新。 - 模型训练模块: 提供多种训练算法和参数优化功能,支持分布式训 练,提升训练效率。
    60 积分 | 158 页 | 395.23 KB | 4 月前
    3
  • word文档 基于AI大模型Agent智能体商务应用服务设计方案(141页 WROD)

    首先,商务 AI 智能体的核心优势在于其能够通过自然语言处理 (NLP)和机器学习(ML)技术,实现对海量数据的快速处理与分 析。例如,在客户服务领域,AI 智能体可以通过分析客户的历史行 为和偏好,提供个性化的服务建议,从而提升客户满意度和忠诚度。 此外,在供应链管理方面,AI 智能体能够实时监控库存水平,预测 市场需求,并自动调整采购计划,以确保供应链的高效运转。 其次,商务 AI AI 智 能体的应用场景和目标。  技术选型:选择适合企业需求的 AI 技术和工具,如深度学习 框架、自然语言处理引擎等。  数据准备:收集和整理企业历史数据,确保数据的质量和完 整性,为 AI 智能体的训练和优化提供基础。  系统集成:将 AI 智能体集成到企业现有的 IT 系统中,确保其 能够与其他业务系统无缝对接。  效果评估:通过关键绩效指标(KPIs)和数据反馈,定期评 营中面临着越来越多的挑战,包括市场竞争加剧、客户需求多样 化、业务流程复杂化等。传统的管理模式和工具已经难以应对这些 挑战,亟需通过技术手段提升效率和竞争力。人工智能(AI)技术 的快速发展为企业提供了新的解决方案,尤其是在商务场景中,AI 智能体的应用能够显著优化业务流程、提升决策精准度并降低成 本。 在当前的市场环境中,企业不仅需要处理大量的数据,还需要 实时分析这些数据以做出快速的业务决策。AI
    10 积分 | 141 页 | 647.35 KB | 1 天前
    3
  • word文档 Deepseek大模型在银行系统的部署方案设计

    误率和成本效 益等。通过这些指标,我们可以对模型的效果进行量化评估,并根 据反馈进行必要的调整和优化。 总之,通过部署 Deepseek 大模型,我们期望能够显著提升银 行系统的智能化水平,为客户提供更加个性化、高效和安全的服 务,同时增强银行的风险管理和运营能力。 1.1 项目背景 随着金融科技的迅速发展,银行业务的复杂性和数据量呈现指 数级增长,传统的 IT 系统在处理效率、智能化水平和客户体验方 方案。当前,许多领先的银行已经在探索大模型的应用场景,例如 智能客服、自动化文档处理、风险预测和个性化推荐等。然而,大 模型在银行系统中的部署仍面临诸多挑战,包括数据安全、模型性 能优化、系统集成和合规性等问题。 为应对这些挑战,本项目旨在设计一种切实可行的 Deepseek 大模型部署方案,确保其能够在银行环境中高效、稳定、安全地运 行。该方案将结合银行的实际业务需求和技术架构,从以下几个方 面展开:首先 Deepseek 公司负责模型的定制开发、训练和优化,并提供技术支持与培训。 数据供应商则为模型提供高质量的金融数据,确保模型的输入数据 准确可靠。此外,咨询服务公司可能会参与项目的规划和实施,为 银行的数字化转型提供策略建议。监管机构也是重要的参与者,尤 其是在模型合规性、数据隐私保护和模型透明度方面,银行需要与 其保持密切沟通。 在项目团队的组织架构中,设定了明确的责任分工和协作机
    10 积分 | 181 页 | 526.32 KB | 6 月前
    3
  • word文档 AI知识库数据处理及AI大模型训练设计方案(204页 WORD)

    训练已成为推动智能化应用落地的核心环节。本项目旨在构建一套 完整的数据处理与模型训练方案,以满足企业在复杂场景下的智能 化需求。项目通过对多源异构数据的采集、清洗、标注和结构化处 理,打造高质量的知识库,为后续的 AI 模型训练提供坚实的基 础。同时,结合先进的深度学习技术和规模化计算资源,设计高效 的模型训练流程,确保模型在准确性、泛化能力和计算效率方面达 到预期目标。项目的实施将涵盖以下关键步骤: 项目将注重数据安全与隐私保护,通过数据脱敏、加密传输和访问 控制等手段,确保数据处理过程中的合规性。 项目的最终目标是为企业提供一套高效、可靠的知识库数据处 理及 AI 大模型训练方案,助力其在智能化转型中占据竞争优势。 通过本项目的实施,企业将能够显著提升数据处理能力和模型训练 效率,为后续的智能化应用开发和部署打下坚实的基础。 1.1 项目背景 随着人工智能技术的迅猛发展,大模型在各个领域的应用日益 数据存储模块:采用分布式存储技术,支持大规模数据的高效 存储;  数据检索模块:实现高效的分布式检索,满足实时查询需求。 通过上述模块的集成与优化,本方案将显著提升知识库数据处 理的效率和准确性,为 AI 大模型的训练提供高质量的数据支持。 最终,该方案将广泛应用于金融、医疗、教育等多个行业,推动人 工智能技术的深入应用和创新发展。 1.2 项目目标 本项目的核心目标在于构建一个高效、精准的知识库数据处理
    60 积分 | 220 页 | 760.93 KB | 4 月前
    3
  • pdf文档 CAICT算力:2025综合算力指数报告

    运力、模力、环境多个维度,更 加准确剖析我国算力产业发展态势。 《2025 综合算力指数》为我们提供了一个全面而系统的视角来洞察我国算 力发展最新进展。通过科学的指数体系构建,将“综合算力”解构为几十余项具 体的指标,映射出我国在算力领域的发展状况,这将为国家制定精准的产业政 策提供科学依据,为产业的技术创新和投资方向提供“指南”。 展望未来,我国算力发展之路机遇与挑战并存。我坚信,在全国各界的共 推动 我国数字经济高质量发展的新命题。 我国正处于数字经济加速跑的关键期。近年来,我国在算力领 域取得了显著进展。一是算力结构不断优化,技术创新成果频出; 二是存储规模与性能实现结构性突破,为海量数据的高效处理提供 了有力支撑;三是运力基建稳步推进,调度机制逐步完善,有效提 升了算力资源的调配效率;此外,模型技术与产业应用的双轮驱动, 进一步加速了算力向现实生产力的转化。 结合算力 体系,加速基础设施绿色升级;深度开展融合创新实践,助力产业 生态繁荣发展。 《2025 综合算力指数》全面呈现了我国综合算力发展现状,挖 掘各地区综合算力发展问题,并给出发展建议,为我国算力产业“点、 链、网、面”体系化发展提供参考,为数字中国建设实现跨越式发展 筑牢根基。 时间仓促,报告仍有诸多不足,恳请各界批评指正。后续我们 将不断更新完善,如有意见建议请联系中国信通院研究团队: dceco@caict
    20 积分 | 54 页 | 4.38 MB | 1 天前
    3
  • word文档 DeepSeek AI大模型在工程造价上的应用方案

    历 史数据,存在效率低下、误差率高、适应性差等问题。尤其是在当 前建筑项目规模日益扩大、复杂度不断提升的背景下,传统方法已 难以满足精细化、智能化的管理需求。近年来,人工智能技术的迅 猛发展为工程造价领域带来了新的解决方案。DeepSeek-R1 大模 型作为一种先进的深度学习模型,具有强大的数据处理能力和智能 化分析能力,能够有效提升造价管理的精确度和效率。 在当前的工程造价实践中,项目管理者面临着以下主要挑战: 目中的应用效果: 通过引入 DeepSeek-R1 大模型,项目团队能够在项目的各个 阶段实现更精细化的管理,从而显著提升项目的成本控制能力和整 体效益。这一技术的应用不仅符合当前行业发展的趋势,也为未来 工程造价管理的智能化转型提供了切实可行的路径。 1.2 DeepSeek-R1 大模型简介 DeepSeek-R1 大模型的核心优势在于其多维度的数据处理能 力,能够同时处理结构化和非结构化数据。通过整合来自不同来源 智能化方向 发展的迫切需求。 在此背景下,人工智能技术的引入为工程造价行业带来了新的 解决方案。通过深度学习和大数据分析,AI 可以自动化处理大量复 杂的造价信息,提高计算的准确性和效率。同时,AI 技术还可以整 合来自不同来源的数据,打破信息孤岛,实现数据的实时更新和共 享。这将极大提升造价管理的透明度和决策的科学性,为工程造价 行业的技术革新和业务模式转型提供强大动力。 综上所
    0 积分 | 138 页 | 252.70 KB | 5 月前
    3
  • pdf文档 大模型技术深度赋能保险行业白皮书151页(2024)

    大模型技术在保险行业的落 地应用路线。我们详细阐述了数据准备、模型精调、工程化适配、模型评测等关键环节的技 术要点和注意事项,为行业同仁提供理论指导和操作建议。除此之外,成功的落地应用需要 保险公司和科技公司紧密合作,共同构建开放、共享、协同的创新生态。这些内容为保险行 业探索大模型技术的应用提供了宝贵的经验和启示。 在优秀案例展示部分,白皮书通过一系列具有代表性的案例,充分展示了大模型技术 在保险行业的广泛应用场景和显著价值。这些案例涵盖了客户服务、理赔定损、营销推广、 承保核保等多个方面,它们充分证明了大模型技术在提升服务效率、优化客户体验、降低运 营成本、增强风险管理能力等方面的巨大潜力,为保险行业的智能化转型提供了有力的实 践支撑。 更重要的是,我们深刻认识到大模型技术与保险行业的深度融合,不仅将推动保险业 务模式的深刻变革,还将重塑保险行业的竞争格局和生态体系。通过精准预知风险、主动管 方向 发展。 在全球金融格局深刻调整、中国经济高质量发展的背景下,保险业作为国民经济的重 要支柱和风险管理的重要力量,必须紧跟时代步伐,把握科技革命的历史机遇。我们希望通 过本白皮书的发布,为保险业做好科技金融和数字金融两篇大文章提供有力支持,推动保 险行业从科技赋能向科技引领的转变。同时,我们也呼吁行业同仁和合作伙伴加强交流与 合作,共同推动科技保险和数字保险的发展,共创保险行业的美好未来!
    20 积分 | 151 页 | 15.03 MB | 1 天前
    3
  • word文档 DeepSeek在金融银行的应用方案

    挑战与机遇。数字化转型已成为金融银行业提升效率、优化客户体 验、增强竞争力的必由之路。在这一背景下,DeepSeek 作为一款 先进的智能解决方案,凭借其强大的数据分析能力、智能决策支持 以及高效的业务流程自动化,为金融银行业提供了切实可行的应用 方案。 DeepSeek 的核心优势在于其深度学习和人工智能技术的深度 融合,能够迅速处理和分析海量金融数据,帮助银行机构在风险控 制、客户管理、产品创新等关键领域实现智能化转型。通过引入 效率,还能在复杂的市场 环境中做出更为精准的决策,从而显著降低运营成本,增强风险抵 御能力。  风险控制:DeepSeek 通过实时监控和分析交易数据,能够精 准识别异常行为和潜在风险点,为银行提供及时的风险预警和 应对策略。  客户管理:借助 DeepSeek 的智能分析能力,银行可以深入 挖掘客户需求,提供个性化的金融服务,提升客户满意度和忠 诚度。  产品创新:DeepSeek 市场趋势进行高精度预测,为投资决策提供可靠依据。  实时数据分析:DeepSeek 支持对大规模实时数据的快速处理 和分析,确保银行能够及时响应市场变化。  自适应学习:DeepSeek 具备强大的自适应学习能力,能够根 据新数据不断优化模型性能,确保其在复杂金融环境中的稳定 性。  多模态数据处理:DeepSeek 不仅能够处理结构化数据,还能 高效分析非结构化数据(如文本、图像等),为金融服务提供
    10 积分 | 154 页 | 527.57 KB | 6 月前
    3
  • word文档 公共安全引入DeepSeek AI大模型视频智能挖掘应用方案

    效率和准确性。 人工智能(AI)技术的迅速发展,尤其是大模型技术的成熟, 使得视频内容的智能挖掘成为可能。通过对视频监控数据的深度学 习和分析,AI 大模型能够实现对大量影像数据的实时处理和决策支 持,为公共安全管理提供强有力的支持。这一方案不仅可以提升处 理速度,还能减少人为因素的干扰,提高事件识别和响应的准确 性。 在这一背景下,建立一套基于 AI 大模型的视频智能挖掘应用 方案显得尤为重要。该方案主要包括以下几个关键环节: 能够及时发出预警,通知相关管理部门快速响应。 4. 数据存储与回溯分析:对处理后的数据进行有效的存储,形成 可供后续分析与学习的数据库。同时,支持事后回溯,帮助分 析事件的发生原因与发展过程,为未来的安全管理提供依据。 5. 多部门协作与信息共享:建立跨部门的信息共享机制,确保公 共安全管理中各方的有效协作。通过共享视频监控数据、分析 报告等信息,提升应急管理的综合能力。 在实施这一 制。同时,随着技 术的进步与不断演化,定期对模型进行更新与迭代,保持其高效性 与准确性。 整体来看,基于 AI 大模型的视频智能挖掘应用方案,为提升 公共安全管理能力提供了新思路和切实可行的方案,通过智能化手 段有效应对日益复杂的安全挑战,为建设更安全、更和谐的社会环 境奠定了基础。 1.1 背景介绍 随着社会的发展和城市化进程的加快,公共安全问题日益突 出。各类突发事件、公共安全事故频繁发生,给社会和人民生活带
    0 积分 | 144 页 | 318.04 KB | 3 月前
    3
共 35 条
  • 1
  • 2
  • 3
  • 4
前往
页
相关搜索词
人工智能人工智能技术应用56PPT咨询客服AI模型数据训练考评系统建设方案151WORD基于Agent商务服务应用服务设计设计方案141WRODDeepseek银行部署方案设计知识知识库处理数据处理204CAICT算力2025综合指数报告DeepSeek工程造价工程造价深度赋能保险行业保险行业白皮皮书白皮书2024金融公共安全公共安全引入视频挖掘
维度跃迁
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传,所有资料均作为学习交流,版权归原作者所有,并不作为商业用途。
相关费用为资料整理服务费用,由文档内容之真实性引发的全部责任,由用户自行承担,如有侵权情及时联系站长删除。
维度跃迁 ©2025 | 站点地图 蒙ICP备2025025196号
Powered By MOREDOC PRO v3.3.0-beta.46
  • 我们的公众号同样精彩
    我们的公众号同样精彩