AI大模型人工智能数据训练考评系统建设方案(151页 WORD).........................................................................................50 4.1 数据源管理..........................................................................................53 4.2 数据采集与存储 40% 4. 训练评估时间缩短 50% 系统的主要应用场景包括但不限于: - 机器学习模型的训练过 程评估 - 深度学习网络的性能优化 - 训练数据的质量控制 - 计算资 源的最佳分配 - 训练效果的持续跟踪与改进 项目将在现有技术基础上,整合多方资源,采用模块化设计思 路,确保系统具有良好的扩展性和适应性。通过本项目的实施,将 建立起一套科学、规范、高效的人工智能数据训练考评体系,为 的 高质量和高可用性。 2. 实现精准模型考评: 设计多维度的考评指标体系,包括准确 性、召回率、F1 值等,结合可视化工具,全面评估模型性 能,确保考评结果的科学性和客观性。 3. 支持多场景应用: 构建灵活的考评框架,使其能够适应不同领 域(如自然语言处理、计算机视觉等)和不同规模的数据集, 满足多样化的业务需求。 4. 提高系统可扩展性: 采用模块化设计,支持随业务增长进行功60 积分 | 158 页 | 395.23 KB | 4 月前3
基于大模型的企业架构建模助力银行数字化转型应用方案企业架构建模帮助银行梳理和整合各项业务能力,形成全面的能力地图,为数字化转型提供 清晰的方向和路径。 • 支持资源优化配置,提升运营效率,降低转型成本。 构建全能力地图 02 银行数字化转型现状与痛 点分析 传统银行系统多采用集中式架构,模块化程度低,导致系统灵活性不足,难以快速响应市场需 求和业务变化。 传统银行系统架构局限性分析 技术架构老化 现有架构难以支持高并发和大规模数据处理,无法满足日益增长的线上业务需求,限制了银行 大模型通过构建业务知识图谱,将 业务实体、关系和规则进行结构化 表示,支持业务模型的深度分析和 推理。 大模型在业务架构建模中的应用逻辑 智能化优化 场景化应用 知识图谱构建 大模型能够实时集成多源异构数据,确 保业务模型的实时性和准确性,支持实 时决策和业务监控。 大模型能够根据实时业务变化,动态调 整业务模型,确保模型与业务环境的一 致性,提升业务响应速度。 大模型基于历史数据和实时数据,进行 与现有系统 之间的数据交互顺畅,减少集成过程中的兼容性问题。 模型轻量化部署 02 针对大模型的高计算需求,采用模型压缩和量化技术,降 低模型的计算复杂度和存储需求,使其能够在现有硬件资 源上高效运行。 模块化集成设计 03 将大模型的功能拆分为多个独立模块,逐步与现有系统集 成,降低整体集成风险,同时便于后续的功能扩展和优化。 实时数据处理能力 04 结合流式计算框架(如 Apache40 积分 | 56 页 | 11.28 MB | 5 月前3
金融-DeepSeek银行部署加速,AI金融应用迎来跃迁R1 为代表的优秀开源模型的能力离闭源模型越来越近。行业普遍认为如果开源软件达到闭源 80% 以上能 力,就足以压缩闭源的生存空间。 DeepSeek 能力能够比肩 OpenAIo1 ,开源使各行业机构能够轻松获取前沿模型能力, 且可直接进行私有化部署或商业化开发。 开源易获得: DeepSeek 使私有化部署模型也能够追平前沿闭源模型水 平 图表:闭源模型与开源模型的差距正在缩小 资料来源: 模。通过这些改进, Janus-Pro 在多模态理解和文本到 图像的指令跟踪功能方面都取得了重大进步,同时还增强了文本到图像生成的稳定性。 n 作为在 GenEval 等评测中超越 DALL-E 3 和 Stable Diffusion 3-Medium 的开源模型, Janus-Pro 也展现出了更多应用潜力。 图表: Janus-Pro 多模态理解和视觉生成表现 资料来源: Janus-Pro: Unified Multimodal Understanding and Generation with Data and Model Scaling ,中泰证券研究所 11 多模态: Janus-Pro 等开源多模态模型有望进一步提升应用能 力 理解金融应用的“降本增效 - 价值创 造 - 决策赋能”三个层次 2 n 我们认为金融行业人工智能的应用价值大体可以分为三个层次: 降本增效,价值创造与决策赋能。其中当下应用最广10 积分 | 25 页 | 1.44 MB | 1 天前3
审计领域接入DeepSeek AI大模型构建Agent智能体提效设计方案(204页 WORD).........................................................................................38 3.2.1 多源数据接入方案............................................................................................. 能性。相较于通用 AI 模型,审计智能体需要具备三个核心能力维 度:首先是领域知识的深度适配,包括国际财务报告准则 (IFRS)、美国通用会计准则(GAAP)等超过 2000 项条款的准 确解析;其次是多模态数据处理能力,既能解析 PDF 财报和扫描 凭证,又能处理 Excel 底稿和数据库日志;最后是可追溯的推理链 条,每个审计结论都必须具备可验证的逻辑路径。以下为审计智能 体与传统工具的对比差异: 时仍显乏力。某上市 公司审计案例显示,其采购循环审计中仍有 62%的供应商资质验证 需要人工复核扫描件,这类场景亟需具备多模态处理能力的智能体 支持。同时,审计质量控制的最后一公里问题突出,现有系统缺乏 对审计底稿逻辑完备性的自动校验能力,导致约 28%的监管问询源 于底稿链条断裂。 在此背景下,构建深度融合审计专业知识的智能体成为破局关 键。这类系统需要同时满足三个刚性要求:审计准则的强合规性约10 积分 | 212 页 | 1.52 MB | 1 天前3
AI知识库数据处理及AI大模型训练设计方案(204页 WORD)景下的智能 化需求。项目通过对多源异构数据的采集、清洗、标注和结构化处 理,打造高质量的知识库,为后续的 AI 模型训练提供坚实的基 础。同时,结合先进的深度学习技术和规模化计算资源,设计高效 的模型训练流程,确保模型在准确性、泛化能力和计算效率方面达 到预期目标。项目的实施将涵盖以下关键步骤: 数据采集与整合:从内部系统、公开数据集以及第三方数据源 中获取数据,确保数据的多样性和覆盖度。 存储和检索等多个环节,每个环节都存在技术难点和优化空间。例 如,数据采集需要考虑多源异构数据的兼容性问题,数据清洗则需 要处理缺失值、噪声和不一致性等。这些问题的解决方案,直接影 响到最终模型训练的成果。 为了应对上述挑战,本项目旨在设计一套全面的知识库数据处 理及 AI 大模型训练方案,具体包括以下核心内容: 数据采集模块:支持多源异构数据的自动化采集和整合; 数据清洗模块:提供多种数据清洗算法,确保数据质量; 大模型。通过系统的数据处理和模型训练,最终实 现从海量异构数据中提取有价值的信息,并将其转化为可支持决策 和创新的知识资产。具体目标包括以下几个方面: 首先,实现知识库数据的高效清洗与整合。针对多源异构数 据,设计并实施数据清洗规则,确保数据的准确性、完整性和一致 性。同时,建立数据标准化流程,统一数据格式和语义表达,为后 续的模型训练提供高质量的数据基础。数据清洗的关键指标包括: -60 积分 | 220 页 | 760.93 KB | 4 月前3
DeepSeek洞察与大模型应用-人工智能技术发展与应用实践• MLA多头潜在注意力机制(降低显存占用) • MTP多token预测(提升效果、提升推理速度) • FP8混合精度训练、DualPipe流水线、MoE负载 均衡(提升训练效率,降低训练成本) DeepSeek-V3多项评测成绩超越了Qwen2.5-72B和Llama-3.1-405B等其他开源模型,并在性能上和 世界顶尖的闭源模型GPT-4o以及Claude-3.5-Sonnet不分伯仲。 ai/?leaderboard) 更新日期:2025-2-11 n DeepSeek-V3和R1进入到国际顶尖模型行列 n DeepSeek-R1是综合效果最好的开源模型, 排在众多优秀的开源和闭源模型前面 n Qwen2.5-Max、GLM-4-Plus、Step-2- 16K-Exp等国产模型也有不俗的表现 -6- DeepSeek模型效果 (2/2) n DeepSeek-V3和 减少AI支 出:“我仍然认为,从长远来看,大力投入资本支出和基础设施建设将成为一种战略优势。” 卷积神经网络之父Yann LeCun: “与其说中国AI正在追赶美国,不如说开源模型正在超越 闭源”。 Anthropic CEO达里奥·阿莫迪:我认为一个公平的说法是“ DeepSeek 生产的模型接近 7-10 个月前美国模型的性能,成本要低得多(但远不及人们建议的比例) ” Scale10 积分 | 37 页 | 5.87 MB | 6 月前3
DeepSeek智能体开发通用方案无缝集成到 现有的企业信息化系统中,降低实施成本。 在技术架构方面,DeepSeek 智能体开发通用方案采用分层设 计,主要包括数据感知层、智能决策层和结果输出层。数据感知层 负责从多种数据源中采集信息,包括结构化数据、非结构化数据以 及实时流数据;智能决策层通过机器学习算法和规则引擎对数据进 行分析与处理,生成最优决策策略;结果输出层则将决策结果以可 视化、API 或自动化操作的形式反馈给用户或系统。 本项目的核心目标是开发一款高度智能、灵活可扩展的 DeepSeek 智能体,旨在满足多场景下的智能化需求,提升业务处 理效率与用户体验。通过对先进深度学习算法与大数据分析技术的 深度整合,构建一个具备自主学习、动态优化与高效执行能力的智 能体框架。项目将重点解决以下几方面问题:首先,实现智能体在 多模态数据(包括文本、图像、音频等)下的精确感知与理解能 力;其次,优化智能体在不同业务场景中的决策逻辑,使其能够快 模块以及核心算法的初步实现,确保智能体具备基本的多模态数据 处理能力。 - 第二阶段:优化智能体的决策引擎,引入强化学习与迁移学习技 术,提升其在复杂场景中的适应性,并通过模拟测试验证其性能。 - 第三阶段:完成智能体的资源调度与部署优化,确保其在实际生 产环境中能够高效运行,并通过用户反馈持续迭代优化。 此外,项目还将重点关注以下性能指标: - 智能体的多模态数据识别准确率:目标达到 95%以上。0 积分 | 159 页 | 444.65 KB | 3 月前3
DeepSeek在金融银行的应用方案支持对大规模实时数据的快速处理 和分析,确保银行能够及时响应市场变化。 自适应学习:DeepSeek 具备强大的自适应学习能力,能够根 据新数据不断优化模型性能,确保其在复杂金融环境中的稳定 性。 多模态数据处理:DeepSeek 不仅能够处理结构化数据,还能 高效分析非结构化数据(如文本、图像等),为金融服务提供 更全面的支持。 此外,DeepSeek 技术还具备高度的可扩展性和灵活性,能够 在客户关系 管理方面也展现出巨大潜力。通过分析客户的历史行为数据和偏 好,银行可以为其量身定制金融产品和服务,提升客户满意度和忠 诚度。此外,DeepSeek 还能够优化银行的贷款审批流程。通过整 合多源数据(如征信记录、社交媒体数据等),DeepSeek 可以为 银行提供更全面的客户画像,从而更准确地评估贷款风险,减少不 良贷款率。 在风险管理领域,DeepSeek 的应用同样值得期待。通过对宏 银行业数字化转型的核心驱动力之一。 2. DeepSeek 技术基础 DeepSeek 技术基础构建于先进的深度学习框架之上,结合了 大数据处理、自然语言处理(NLP)、图像识别和增强学习等多领 域的技术优势。其核心在于通过高效的算法模型,实现数据的深度 挖掘与分析,从而为金融银行业提供精准的决策支持。在数据处理 方面,DeepSeek 采用了分布式存储与并行计算架构,能够处理 PB10 积分 | 154 页 | 527.57 KB | 6 月前3
公共安全引入DeepSeek AI大模型视频智能挖掘应用方案.........................................................................................31 3.1 数据源与输入......................................................................................34 3.1.1 视频监控设备 预测潜在的安全风险,并及时发出预警信息。 3. 高效调度与响应:在突发事件发生时,AI 能够帮助指挥中心 快速调度资源,制定响应策略,提高处置效率。 4. 数据整合与共享:通过构建视频数据平台,整合各类监控资 源,为决策提供依据,促进信息共享。 这些措施不仅能够有效预防和减少安全事故的发生,还能够增 强公众对安全管理的信任感,有助于构建一个安全、和谐的社会环 境。 最后,未来公共安全领域将朝着智能化、系统化的方向发 快地从历史视频数据中检索到相关信息,为调查和事后分析提供便 利。 在数据整合方面,AI 大模型不仅仅局限于视频监控数据的分 析,还能够与其他类型的数据源进行融合,包括社交媒体、传感器 数据等,从而建立更全面的公共安全态势感知能力。通过多源信息 整合,公共安全部门能够更全面地理解复杂的安全环境,提高方案 设计的科学性与可行性。 推动公共安全领域的 AI 大模型应用还需明确以下几个重点:0 积分 | 144 页 | 318.04 KB | 3 月前3
大模型技术深度赋能保险行业白皮书151页(2024)大模型技术在保险行业的应用现状及成效···············21 1.1.1 数据:多措并举缓解短缺状态· · · · · · · · · · · · · · · · · · · · 10 1.1.2 算力:单芯片算力达新高,国产化初具规模· · · · · · · · · · · 12 1.1.3 模型:多模态崛起,端侧模型影响未来终端应用· · · · · · · · 14 2.1 全球保险行业的发展趋势· · · 27 3.保险业落地实践篇· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 43 1.1.4 应用:日益广泛深入,多领域齐头并举· · · · · · · · · · · · · · 17 3.2 保险垂直领域大模型构建及评测· · · · · · · · · · · · · · · · · · · · 52 3 · · · · · · · · · · · · · · · · · · · · · · 131 6.1.2 应用场景:由非决策类场景向决策类场景过渡· · · · · · · 135 6.1.3 多模态大模型:落地应用潜力巨大· · · · · · · · · · · · · · · · 136 6.2 行业实践建议· · · · · · · · · · · · · · · · · · · ·20 积分 | 151 页 | 15.03 MB | 1 天前3
共 36 条
- 1
- 2
- 3
- 4
