基于大模型的具身智能系统综述基于大模型的具身智能系统综述 王文晟 1 谭 宁 1 黄 凯 1 张雨浓 1 郑伟诗 1 孙富春 2 摘 要 得益于近期具有世界知识的大规模预训练模型的迅速发展, 基于大模型的具身智能在各类任务中取得了良好的 效果, 展现出强大的泛化能力与在各领域内广阔的应用前景. 鉴于此, 对基于大模型的具身智能的工作进行了综述, 首先, 介绍大模型在具身智能系统中起到的感知与理解作用; 介绍大模型在具身智能系统中起到的感知与理解作用; 其次, 对大模型在具身智能中参与的需求级、任务级、规划级和动作 级的控制进行了较为全面的总结; 然后, 对不同具身智能系统架构进行介绍, 并总结了目前具身智能模型的数据来源, 包括 模拟器、模仿学习以及视频学习; 最后, 对基于大语言模型 (Large language model, LLM) 的具身智能系统面临的挑战与发 展方向进行讨论与总结. 关键词 大语言模型, 大型视觉模型 大型视觉模型, 基础模型, 具身智能, 机器人 引用格式 王文晟, 谭宁, 黄凯, 张雨浓, 郑伟诗, 孙富春. 基于大模型的具身智能系统综述. 自动化学报, 2025, 51(1): 1−19 DOI 10.16383/j.aas.c240542 CSTR 32138.14.j.aas.c240542 Embodied Intelligence Systems Based on20 积分 | 19 页 | 10.74 MB | 1 天前3
Deepseek大模型在银行系统的部署方案设计Deepseek 大模型在银行系统的部署 方案设计 目 录 1. 项目概述.......................................................................................................6 1.1 项目背景.......................................... 172 1. 项目概述 在当前金融科技的迅速发展中,银行系统面临着处理大量复杂 数据和提供高效服务的挑战。为了应对这些挑战,本项目旨在部署 Deepseek 大模型,以提升银行系统的智能化水平和处理效 率。Deepseek 大模型,作为一种先进的 AI 技术,能够处理结构化 和非结构化数据,提供精准的预测和决策支持。 项目的主要目标包括提高客户服务质量、优化风险管理、增强 反欺诈能力 (KPIs),包括但不限于客户满意度、处理速度、错误率和成本效 益等。通过这些指标,我们可以对模型的效果进行量化评估,并根 据反馈进行必要的调整和优化。 总之,通过部署 Deepseek 大模型,我们期望能够显著提升银 行系统的智能化水平,为客户提供更加个性化、高效和安全的服 务,同时增强银行的风险管理和运营能力。 1.1 项目背景 随着金融科技的迅速发展,银行业务的复杂性和数据量呈现指10 积分 | 181 页 | 526.32 KB | 6 月前3
DeepSeek AI大模型在工程造价上的应用方案................................................................................7 1.2 DeepSeek-R1 大模型简介.................................................................10 1.3 工程造价行业现状............... DeepSeek-R1 的意义.................................................................12 2. DeepSeek-R1 大模型的技术特点..............................................................14 2.1 模型架构................... 算和经验判断,不仅耗时费力,还存在一定的主观性和误差率。随 着建筑项目的复杂性和规模不断增加,传统方法已难以满足高效、 精准的造价需求。因此,引入先进的人工智能技术,特别是大模型 技术,成为提升工程造价效率和精度的关键路径。 DeepSeek-R1 大模型作为一种前沿的人工智能技术,凭借其 强大的数据处理能力和深度学习算法,能够在工程造价领域发挥重 要作用。该模型能够快速处理和分析海量的历史项目数据、市场行0 积分 | 138 页 | 252.70 KB | 5 月前3
铁路沿线实景三维AI大模型应用方案项目编号: 铁路沿线实景三维 AI 大模型 应 用 方 案 目 录 1. 项目背景与目标............................................................................................6 1.1 铁路运输的重要性...................................... 1.2 现有铁路管理模式的不足.....................................................................9 1.3 实景三维 AI 大模型的优势..................................................................11 1.4 项目目标与愿景.............. 近年来,随着我国铁路运输业的快速发展,沿线的基础设施和 周边环境的管理与维护显得尤为重要。优秀的铁路沿线管理不仅能 够提高运输效率,保障安全,还能够促进沿线经济的发展。因此, 本项目旨在通过构建一个实景三维 AI 大模型,提升铁路沿线的管 理能力与服务水平。 该项目的背景主要基于以下几点: 首先,铁路沿线环境复杂多变,涉及到的设施包括轨道、信 号、桥梁、隧道等多种结构,周围环境也包括居民区、商业区等,40 积分 | 200 页 | 456.56 KB | 5 月前3
公共安全引入DeepSeek AI大模型视频智能挖掘应用方案项目编号: 公共安全引入 AI 大模型视频智能挖掘 应 用 方 案 目 录 1. 引言...............................................................................................................5 1.1 背景介绍........................ .......................................................................7 1.2 AI 大模型在公共安全中的潜力.............................................................8 1.3 文章目的................................... 效率和准确性。 人工智能(AI)技术的迅速发展,尤其是大模型技术的成熟, 使得视频内容的智能挖掘成为可能。通过对视频监控数据的深度学 习和分析,AI 大模型能够实现对大量影像数据的实时处理和决策支 持,为公共安全管理提供强有力的支持。这一方案不仅可以提升处 理速度,还能减少人为因素的干扰,提高事件识别和响应的准确 性。 在这一背景下,建立一套基于 AI 大模型的视频智能挖掘应用 方案显得尤为重要。该方案主要包括以下几个关键环节:0 积分 | 144 页 | 318.04 KB | 3 月前3
基于大语言模型技术的智慧应急应用:知识管理与应急大脑害事故,保护人民群众生命财产安全和维护社会稳 定具有重要意义。智慧应急是应急管理信息化建设 的总体目标,强调要适应科技信息化发展大势,以信 息化推进应急管理现代化,提高监测预警、监管执 法、指挥决策、救援实战、社会动员等应急管理能力。 大语言模型是具有大规模参数的深度学习模 型,通过对海量文本的训练习得语言的统计规律, 从而具有理解和生成自然语言的能力,实现人机之 间的有效通信。自2018年双向编码表示模型(bidirec⁃ tional 2022 年第四代生成式预训练模型(gen⁃ erative pre-trained transformer,GPT),人工智能领域 自然语言处理方向的重大突破,引领了大规模预训 练模型及应用研究的热潮。大语言模型技术的迅猛 进展正深刻地影响着机器系统智能化的轨迹,标志 着进入一个新的人工智能时代。从 BERT 到 GPT [1-2], 这些模型通过深度学习和海量数据训练,不仅推动了 自然语言处理技术的边界,也正在改变知识获取和创 基 金(20BZZ037), 广 东 省 哲 学 社 会 科 学 规 划 项 目 (GD24XGL075)资助 *通信作者简介 黄欢(1976— ), 男, 湖南常德人, 硕士, 助理研究员。 基于大语言模型技术的智慧应急应用: 知识管理与应急大脑 龚 晶 1 黄 欢 2,* (1. 暨南大学 公共管理学院/应急管理学院,广州 510632;2. 暨南大学 党委政治保卫部/人民武装部,广州 510632)20 积分 | 8 页 | 3.21 MB | 1 天前3
AI大模型人工智能行业大模型SaaS平台设计方案项目编号: 人工智能行业 AI 大模型 SaaS 平台 设 计 方 案 目 录 1. 引言...............................................................................................................6 1.1 背景........................ 4.1.3 云服务平台.................................................................................78 4.2 大模型集成..........................................................................................80 4.2 业的广泛应用,推动了企业对大型模型(大模型)解决方案的日益 需求。随着深度学习和自然语言处理技术的突破,许多企业意识 到,通过利用大模型,可以显著提高产品的智能化水平,提升效 率,降低人力成本。与此同时,作为一种新兴的商业模式,软件即 服务(SaaS)平台的兴起,为企业提供了灵活、可扩展的解决方 案,使其能够在传递人工智能价值的同时,降低技术门槛。 大模型 SaaS 平台的核心在于能够将复杂的人工智能模型转化50 积分 | 177 页 | 391.26 KB | 5 月前3
从大模型、智能体到复杂AI应用系统的构建(61页 PPT)浙江大学 DeepSeek 系列专题线上公开课(第二季) 从大模型、智能体到复杂 AI 应用系统的构 建 —— 以产业大脑为例 肖俊 浙江大学计算机学科与技术学院人工智能研究所 2025 03 杭州 • 大模型推理能力快速提 升 • 推理模型和思维链 (CoT) • 智能体是什么? • 四链融合产业大脑案例 提纲 大模型推理能力快速提升 开始模仿人 脑进行大量 数据的标记 和训练 神经网络 CNN RNN GAN 1990 年开始; 2006 年获得突 破 快速回望历史——大模型的产生 对人脑学习 过程进行重 点关注 Transformer 2017 年 ChatGPT 2022 年 Instruct GPT BigBird ALBERT ELECTRA 基于模板和 规则的前深 度学习阶段 基于规则 的少量数 据处理 辨别式 AI 对现有内容进行分析、分类、判断、预测 客户流失预测 生成式 AI 自动生成开放的文本、图像、音频、视频等内容 短视频片段 广告视频 多模态生成 相对通用的人工智能 一个大模型解决多个问题 自适应地应对复杂外界环境的挑战 专用人工智能 一事一模型,每个模型完成特定智能任务 解决特定的智能问题 里程碑: ChatGPT 的成 功 AI 1.0 时代 AI 2.020 积分 | 61 页 | 13.10 MB | 1 天前3
人工智能大模型保险行业应用评测报告(21页 PPT)INTELLIGENCE ARTIFICIAL 人工智能大模型 保险行业应用评测报告 Evaluation Report on the Application of Large-scale Artificial Intelligence Models in the Insurance Industry 2023 年 10 月 以 ChatGPT 为代表的 AI 大模型技术席卷全球,不仅将人工智能推向新的 )。 AIGC 时代,大模型作为基础设施,将为千行百业赋能,场景广阔,潜力无限。具体到保险行 业, AIGC 有望在保险产品设计、精算、营销、运营、客服等全链路环节提供深度的技术加持,推动行业提升效能,实现高 质量发展的 同时,进一步提升普惠金融服务的广度与深度,为中国消费者提供更智能、更便捷、更有温度的保险产品与服务。 AIGC 时代,应用为王。为了解当下国内外主流大模型在保险领域应用的成 保,联合国内保险科技研究机构——分子实验室,共同发布《人工智能大模型保险行业应用评测报告》。报告特邀国内知名 高校专家学者、中国大地财产保险股份有限公司、众惠财产相互保险社等共同调研并撰写完成。 《报告》通过保险、法律、医疗等相关领域常规知识问题,测试大模型的基础能力,同时针对部分主要典型的应用能力设计 了保险业务场景设定及问题,以测试大模型的实际应用能力。区别于以底层专业性能指标为评测维度的大模型评测报告, 《报告》以20 积分 | 20 页 | 3.47 MB | 1 天前3
大模型技术深度赋能保险行业白皮书151页(2024)大模型技术 深度赋能保险行业白皮书 (2024) 阳光保险集团股份有限公司 清华大学五道口金融学院 中国保险学会 科大讯飞股份有限公司 2024年10月 PREFACE 前 言 � 在人类科技发展的历史洪流中,2023年无疑是大模型技术取得突破性进展的元年。 ChatGPT的问世,如同一颗石子投入平静的湖面,激起了全球科技领域的滔天巨浪。它不 仅深刻改变了人机交互的方式,更预 仅深刻改变了人机交互的方式,更预示着一个由大模型引领的智能新时代的到来。比尔· 盖茨的赞誉、马斯克的断言以及马化腾的深刻洞察,都从不同角度揭示了大模型技术对于 人类社会发展的深远影响。而国家网信办等七部门联合发布的《生成式人工智能服务管理 暂行办法》,则为中国大模型技术的健康发展提供了坚实的政策保障和合规框架。 在保险行业,这一技术革命同样引发了深刻的变革。国内外众多保险公司和保险科技 公司,如阳光、人保、平安、国寿、 公司,如阳光、人保、平安、国寿、泰康、瑞再、安盛、安联等,纷纷投身于大模型技术的研发 与应用,积极探索其在保险业务中的无限可能。阳光保险集团作为行业的先行者和探索 者,于2023年初率先启动了“阳光正言GPT大模型战略工程”,旨在通过大模型技术的深度 应用,推动保险业务模式的重塑与升级。 经过一年的实践与沉淀,可以看到,2024年是大模型技术在各行各业的应用落地之 年。这一年,我们见证了大模型技术从理论探索走向实际应用,从概念验证进入规模化部20 积分 | 151 页 | 15.03 MB | 1 天前3
共 36 条
- 1
- 2
- 3
- 4
