积分充值
 首页  上传文档  发布文章  登录账户
维度跃迁
  • 综合
  • 文档
  • 文章

无数据

分类

全部人工智能(38)大模型技术(38)

语言

全部中文(简体)(38)

格式

全部PDF文档 PDF(14)DOC文档 DOC(13)PPT文档 PPT(11)
 
本次搜索耗时 0.026 秒,为您找到相关结果约 38 个.
  • 全部
  • 人工智能
  • 大模型技术
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • DOC文档 DOC
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 人工智能在电力电子中的应用

    20 积分 | 62 页 | 7.40 MB | 2 天前
    3
  • ppt文档 智能对话系统中的个性化(31页PPT-吾来)

    智能对话系统中的个性化 胡一川 来也联合创始人 &CTO . 2000-2007 :清华大学本硕 . 2008-2011 :宾夕法尼亚大学博 士 . 2011-2012 :今晚看啥联合创 始人 . 2013-2015 :百度资深架构 师 . 2015 至今:来也联合创始人 &CTO 个人简介 胡—川 让每个人拥有助理 六百万用户正在使用的对话式在线个人助理服务 • 理解 2 基于分类模型的问答系统 分类器 分类 1 分类 3 训练分类器 分类结果 用户问题 • 检索 • 以知识库中的问题为粒度建立索引,每 个 问题都对应一个知识点 • 对用户问题进行分词、去停用词、同义 词 扩展等操作 • 返回知识库中若干个相关性最高的问题 对 应的知识点 • 排序 • 通过一个语义匹配模型计算用户问题和 检 索返回问题的语义相似度,选择语义 Input NLU Dialog State User Dialog Act DM 任务型对话系统中的 NLU 和 DM System Dialog Act User Dialog Act • 每一个状态都对应一个系统动作 • 状态之间的跳转以用户当前输入为条件 • 通过有限状态机将
    10 积分 | 31 页 | 1.24 MB | 2 天前
    3
  • ppt文档 深度学习在智能助理产品中的应用(20页PPT-吾来)

    深度学习在智能助理产品中的应用 胡一川 结束语 . 提升智能助理产品的可靠性 . 智能助理产品的特点 . 深度学习与智能助理 目 录 用户终端的变化和技术的进步,推动更自然的人机交 互方式及产品形态 通过理解文本或语音形式 的自然语言来协助用户完 成需求的软件应用或平台 2000s PC 键盘 & 鼠 标 网站 时间 设备 交互方式 产品形态 2020s (million) 2015 2021 843 390 155 秘书服务 母婴用品 教育 旅游度假 护肤彩妆 汽车服务 租房售房 法律咨询 珠宝配饰 在重视在线交互的场景中,智能助理能够提升沟通效 率和用户体验,创造商业价值 在 场景示例 线 (非穷尽) 交 互 需 求 度 鞋类箱包 日用百货 食品 家电数码 物业服务 ■ 深度学习的应用 :实体抽 取 l 基于深度学习,完全数据驱 动,无需特征工程 l 方法通用,适用于多种领域 不同类型的实体抽取 l 效果明显好于传统方法 l 从非结构化的对话中挖掘结构化的知识 l 将知识进行沉淀和统一维护 l 提高客服效率和质量,提升用户体验 l 知识点数量庞大,无监督的聚类方法效果很差 l 词向量不适合表示句子语义 l 无监督和有监督方法相结合
    10 积分 | 20 页 | 427.93 KB | 2 天前
    3
  • pdf文档 AI大模型技术在电力系统中的应用及发展趋势

    10 积分 | 42 页 | 3.98 MB | 3 月前
    3
  • word文档 AIGC生成式AI大模型医疗场景应用可行性研究报告(152页 WROD)

    随着人工智能技术的迅猛发展,生成式大模型在诸多领域展现 出卓越的潜力,特别是在医疗行业。这些模型通过对大量医疗数据 的学习与应用,不仅能够提高医疗服务的效率,还能够助力医生进 行更为精准的诊断和治疗。因此,在医疗场景中应用生成式大模 型,具有极高的现实意义与可行性。 当前,面对全球医疗资源紧张、临床决策复杂化等挑战,传统 医疗模式已无法满足日益增长的患者需求。医务人员需要在短时间 内处理海量的信息并做出决策,这无疑增加了医疗风险。生成式大 生成初步的诊断 建议。这不仅提高了诊断的准确性,还可以减少医生的工作负担。 基于以往的病例数据,模型能够识别趋势和模式,从而为疾病的早 期发现和预防提供数据支持。 其次,在治疗方案的制定过程中,生成式大模型同样具有重要 的作用。模型能够整合各类医疗信息,包括患者的病史、当前病情 及最新的医学研究成果,为医生提供个性化的治疗建议。例如,针 对肿瘤治疗,可以通过模型生成多种治疗方案,并对每种方案的有 健康监测与预警系统,实现对慢性病患者的实时跟踪 在实际应用过程中,还需强调数据安全与隐私保护。医疗行业 涉及大量的个人健康信息,如何确保这些数据在被模型处理时不被 泄露,是实现这些应用的前提。此外,对模型进行持续的监测与评 估,确保生成结果的科学性与可靠性,也是医疗应用成功的重要因 素。 综上所述,生成式大模型在医疗场景中的应用,不仅是可能 的,而且是切实可行的。随着技术的成熟和数据的积累,这些模型
    60 积分 | 159 页 | 212.70 KB | 4 月前
    3
  • word文档 Deepseek大模型在银行系统的部署方案设计

    .........................................................................172 1. 项目概述 在当前金融科技的迅速发展中,银行系统面临着处理大量复杂 数据和提供高效服务的挑战。为了应对这些挑战,本项目旨在部署 Deepseek 大模型,以提升银行系统的智能化水平和处理效 率。Deepseek 大模型,作为一种先进的 其次,设计和实施数据集成方案,确保模型的训练数据既全面 又具备高质量。  接着,开发并部署 Deepseek 模型,包括模型训练、验证和 优化过程。  最后,进行系统集成和性能测试,确保模型在实际运行中的稳 定性和效率。 在实施过程中,我们将采用最新的技术和方法,如容器化技 术、微服务架构和持续集成/持续部署(CI/CD)流程,以确保部署 的灵活性和可扩展性。此外,项目还将注重数据安全和隐私保护, 遵守相关的法律法规和行业标准。 智能客服、自动化文档处理、风险预测和个性化推荐等。然而,大 模型在银行系统中的部署仍面临诸多挑战,包括数据安全、模型性 能优化、系统集成和合规性等问题。 为应对这些挑战,本项目旨在设计一种切实可行的 Deepseek 大模型部署方案,确保其能够在银行环境中高效、稳定、安全地运 行。该方案将结合银行的实际业务需求和技术架构,从以下几个方 面展开:首先,明确大模型在银行系统中的核心应用场景,包括但 不限于客户服务、风险管理和运营优化;其次,设计高可用、高性
    10 积分 | 181 页 | 526.32 KB | 6 月前
    3
  • word文档 DeepSeek AI大模型在工程造价上的应用方案

    ........................................................................34 4. DeepSeek-R1 在工程量清单编制中的应用...............................................36 4.1 自动识别与提取工程量数据.............................. ........................................................................44 5. DeepSeek-R1 在预算编制与审核中的应用...............................................45 5.1 自动化预算编制流程................................. ........................................................................51 6. DeepSeek-R1 在成本控制与分析中的应用...............................................53 6.1 实时成本监控....................................
    0 积分 | 138 页 | 252.70 KB | 5 月前
    3
  • word文档 DeepSeek在金融银行的应用方案

    融合,能够迅速处理和分析海量金融数据,帮助银行机构在风险控 制、客户管理、产品创新等关键领域实现智能化转型。通过引入 DeepSeek,银行不仅能够提升业务处理效率,还能在复杂的市场 环境中做出更为精准的决策,从而显著降低运营成本,增强风险抵 御能力。  风险控制:DeepSeek 通过实时监控和分析交易数据,能够精 准识别异常行为和潜在风险点,为银行提供及时的风险预警和 应对策略。 此外,DeepSeek 还具备高度的可扩展性和灵活性,能够根据 银行的具体需求进行定制化部署,确保与现有系统的无缝集成。通 过引入 DeepSeek,金融银行不仅能够提升自身的核心竞争力,还 能在数字化转型的浪潮中占据先机,实现可持续发展。 1.1 DeepSeek 技术概述 DeepSeek 是一种基于深度学习和自然语言处理(NLP)技术 的先进人工智能平台,旨在通过高效的算法和海量数据训练,提升 金 资策略优化等。例如,通过深度学习和 NLP 技术,DeepSeek 可以 从海量交易数据中识别潜在的风险因素,预测客户的信用违约概 率,从而帮助银行制定更加科学的风控策略。同时,在客户服务方 面,DeepSeek 的智能客服系统能够理解自然语言,提供 7*24 小 时的高效响应,显著提升客户满意度。 为了进一步提升 DeepSeek 技术在金融银行中的应用效果,以 下是一些关键的技术特点:  高精度预测:通过深度神经网络模型,DeepSeek
    10 积分 | 154 页 | 527.57 KB | 6 月前
    3
  • ppt文档 从大模型、智能体到复杂AI应用系统的构建(61页 PPT)

    GPT-3 M2m- 100 XLM 进行海量数据学习训练 ,人类的反馈信息成 为模型学习的内容 OpenAI 公司于 2022 年 11 月发布 ChatGPT ,短短三个月内日活跃用 户从 零增长至超过 3000 万 ,标志着对话式 AI 进入大众应用阶段 里程碑: ChatGPT 的成 功 ChatGPT 日活量( 2022.11- 2023.02 ) 三阶段训练技术构建 多模态生成 相对通用的人工智能 一个大模型解决多个问题 自适应地应对复杂外界环境的挑战 专用人工智能 一事一模型,每个模型完成特定智能任务 解决特定的智能问题 里程碑: ChatGPT 的成 功 AI 1.0 时代 AI 2.0 时代 图像分类 文本分类 信用评估 房价预测 销量预测 客户分群 新闻聚类 广告定向 社区发现 文生图 文生视频 语音与对话 影视与广告 LIMO 假说: 在预训练阶段已经充 分 编码领域知识的基础模型中, 复 杂 的推理能力可以通过最少但精 确编 排的认知过程演示来涌现: • 模型具备丰富预训练知识 • 高质量的推理链示范 LIMO 通过 817 个训练样本 (题目难度高,覆盖知识面广, 解题步骤 精 细) ,模型就能在复杂的数学推理任务中取得有益的表现 如何低成本实现推理模型? 1. 自动化思维链 (CoT)
    20 积分 | 61 页 | 13.10 MB | 2 天前
    3
  • pdf文档 信息服务-AI Agent(智能体):从技术概念到场景落地

    年代,阿兰图灵把“高度 智能有机体”扩展到了人工智能。如今随着大模型的快速发展,这个概念又被重 新拾起。大模型成为了智能体目前最完美的载体,有望完成从概念到实际应用的 蜕变。用户在 Agent(智能体)模式中给 AI 设臵目标和身份,并提供 Prompt(提 示词)。AI 自主拆分任务、使用工具、完成工作,用户仅负责设立目标、提供工具 资源和监督结果。  赋能两类实体领域,成本与效益的博弈:AI Agent 域的问题。技术方面,智能体具备长期和短期记忆、自主规划、工具使用和自动 执行任务的能力。这些能力不仅能提高工作效率,还能为用户提供更好的体验。 单智能体通过试错学习适用于简单任务,而多智能体则在复杂环境中通过合作或 竞争调整最佳策略。当前,智能体主要应用在自动化和情感需求等领域,但商业 化进程仍面临成本挑战,特别是在智能体交互过程中出现的错误循环和高 token 消耗问题。另外,中国政府积极推动人工智能的发展,各地相继出台相关政策。 智能 化应用的升级,智能体的商业化将迎来新的突破。  建议关注:AI 算力、模型和应用:寒武纪-U、海光信息、景嘉微、龙芯中科、浪 潮信息、中科曙光、神州数码、软通动力、中国长城、科大讯飞、中控技术、海 康威视、大华股份、商汤-W、赛意信息、宝信软件、万兴科技、虹软科技、新致 软件、新国都  风险提示:1.大模型发展不及预期;2. AI 智能体发展不及预期;3.智能体下游需 求不足。
    10 积分 | 33 页 | 4.71 MB | 2 天前
    3
共 38 条
  • 1
  • 2
  • 3
  • 4
前往
页
相关搜索词
人工智能人工智能电力电子应用对话系统个性个性化31PPT深度学习助理产品20AI模型技术力系电力系统发展趋势发展趋势AIGC生成生成式医疗场景可行研究可行性可行性研究报告152WRODDeepseek银行部署方案设计方案设计DeepSeek工程造价工程造价金融从大体到复杂构建61信息服务Agent概念落地
维度跃迁
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传,所有资料均作为学习交流,版权归原作者所有,并不作为商业用途。
相关费用为资料整理服务费用,由文档内容之真实性引发的全部责任,由用户自行承担,如有侵权情及时联系站长删除。
维度跃迁 ©2025 | 站点地图 蒙ICP备2025025196号
Powered By MOREDOC PRO v3.3.0-beta.46
  • 我们的公众号同样精彩
    我们的公众号同样精彩