人工智能在电力电子中的应用20 积分 | 62 页 | 7.40 MB | 3 月前3
智能对话系统中的个性化(31页PPT-吾来)智能对话系统中的个性化 胡一川 来也联合创始人 &CTO . 2000-2007 :清华大学本硕 . 2008-2011 :宾夕法尼亚大学博 士 . 2011-2012 :今晚看啥联合创 始人 . 2013-2015 :百度资深架构 师 . 2015 至今:来也联合创始人 &CTO 个人简介 胡—川 让每个人拥有助理 六百万用户正在使用的对话式在线个人助理服务 • 理解 2 基于分类模型的问答系统 分类器 分类 1 分类 3 训练分类器 分类结果 用户问题 • 检索 • 以知识库中的问题为粒度建立索引,每 个 问题都对应一个知识点 • 对用户问题进行分词、去停用词、同义 词 扩展等操作 • 返回知识库中若干个相关性最高的问题 对 应的知识点 • 排序 • 通过一个语义匹配模型计算用户问题和 检 索返回问题的语义相似度,选择语义 Input NLU Dialog State User Dialog Act DM 任务型对话系统中的 NLU 和 DM System Dialog Act User Dialog Act • 每一个状态都对应一个系统动作 • 状态之间的跳转以用户当前输入为条件 • 通过有限状态机将10 积分 | 31 页 | 1.24 MB | 3 月前3
深度学习在智能助理产品中的应用(20页PPT-吾来)深度学习在智能助理产品中的应用 胡一川 结束语 . 提升智能助理产品的可靠性 . 智能助理产品的特点 . 深度学习与智能助理 目 录 用户终端的变化和技术的进步,推动更自然的人机交 互方式及产品形态 通过理解文本或语音形式 的自然语言来协助用户完 成需求的软件应用或平台 2000s PC 键盘 & 鼠 标 网站 时间 设备 交互方式 产品形态 2020s (million) 2015 2021 843 390 155 秘书服务 母婴用品 教育 旅游度假 护肤彩妆 汽车服务 租房售房 法律咨询 珠宝配饰 在重视在线交互的场景中,智能助理能够提升沟通效 率和用户体验,创造商业价值 在 场景示例 线 (非穷尽) 交 互 需 求 度 鞋类箱包 日用百货 食品 家电数码 物业服务 ■ 深度学习的应用 :实体抽 取 l 基于深度学习,完全数据驱 动,无需特征工程 l 方法通用,适用于多种领域 不同类型的实体抽取 l 效果明显好于传统方法 l 从非结构化的对话中挖掘结构化的知识 l 将知识进行沉淀和统一维护 l 提高客服效率和质量,提升用户体验 l 知识点数量庞大,无监督的聚类方法效果很差 l 词向量不适合表示句子语义 l 无监督和有监督方法相结合10 积分 | 20 页 | 427.93 KB | 3 月前3
AI大模型技术在电力系统中的应用及发展趋势10 积分 | 42 页 | 3.98 MB | 6 月前3
设计院AI专项设计(23页 PPT)更不可能替代 BMS BMS 与 iBMS 空调机组管理 风机盘管管理 室内空气质量 业务实现层 送排风机管理 空调水循环泵 与考勤联动 照明管理 照明控制 与考勤联动 AIBOX 平 台 RTSP 协议 信息发布 私有 协议 会议管理 私有 协议 停车场管理 私有 协议 访客预约 第三方系统 机房动环 ( 食堂管理、 OA. 光伏发电、建筑全生 命周期健康监测 报警管理 中盈能源管 大华监控 理系统 系 统 消防设施 智能电表 智能水表 环境传感器 机房监控 报警管理 设备状态 门禁管理 设备管理 报表查询 设备监测 会议预约 坐席管理 私有 协议 监控存储 碳排放 报表查询 BMS 感知层 智能照明 消防网关 能耗网关 信息发布屏 会议终端 / 中控 Modbus 与 信 息 发 布 会 议 管 理 平 台 PC 端 移动端 边缘计算与网关 综 合 安 防 平 台 智 慧 食 堂 平 台 门 禁 控 制 器 体 化 设 备 等 关10 积分 | 23 页 | 6.11 MB | 3 月前3
大模型技术深度赋能保险行业白皮书151页(2024)深度赋能保险行业白皮书 (2024) 阳光保险集团股份有限公司 清华大学五道口金融学院 中国保险学会 科大讯飞股份有限公司 2024年10月 PREFACE 前 言 � 在人类科技发展的历史洪流中,2023年无疑是大模型技术取得突破性进展的元年。 ChatGPT的问世,如同一颗石子投入平静的湖面,激起了全球科技领域的滔天巨浪。它不 仅深刻改变了人机交互的方式,更预示着一个由大模型引领的智能新时代的到来。比尔· 在保险行业,这一技术革命同样引发了深刻的变革。国内外众多保险公司和保险科技 公司,如阳光、人保、平安、国寿、泰康、瑞再、安盛、安联等,纷纷投身于大模型技术的研发 与应用,积极探索其在保险业务中的无限可能。阳光保险集团作为行业的先行者和探索 者,于2023年初率先启动了“阳光正言GPT大模型战略工程”,旨在通过大模型技术的深度 应用,推动保险业务模式的重塑与升级。 经过一年的实践与沉淀 · · 79 图10 养老陪伴机器人功能示意图· · · · · · · · · · · · · · · · · · · · · · · · · · · · · 80 图11 国寿投资大模型应用中台· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 83 图12 图13 国寿投资GPT· · · · · · · · · · ·20 积分 | 151 页 | 15.03 MB | 3 月前3
Nacos3.0开源开发者沙龙·Agent & MCP杭州站 一个易于构建 AI Agent 应用的服务、配置和AI智能体管理平台(87页)原生配置&服务的模型如何支持 AI应用构建,相比微服务时代提 供更易用的产品化功能 • 默认命名空间不统一:服务&配 置标识不一致 • 配置及服务的动态订阅 • 分布式锁功能支持 • 内核和控制台同端口 • 鉴权开关绑定 • 应用侧数据源动态无损轮转 Nacos-Controller : k8s 配置及服务同步 价值 • 可视化管理界面 • 配置变更实时推送 • 配置历史&回滚 AccessKey/SecretKey • 数据库用户名/密码 • AppKey,Token • 其他业务特定的敏感信息 敏感配置强化加密存储 敏感配置强化加密存储 敏感配置强化加密存储 Nacos 控制台 maintainer-client 默认鉴权 浏览器 独立域名https TLS TLS • 数据源配置统一托管 账号密码,数据库地址,连接池大小,超时 参数 alibaba nacos config nacos-client Nacos Server 5.加载&监听加密配置 Druid Connection 数据库 KMS MSE Nacos控制台 mse-extension( with kms plugin ) 1.绑定凭据 8.凭据轮转 7.创建连接 12.优雅切换/异常保护 0.账号密码托管 6.初始化 11.刷新20 积分 | 87 页 | 11.66 MB | 3 月前3
CRM客户关系系统接入DeepSeek大模型应用场景设计方案(173页WORD).......................................................................170 1. 项目背景与目标 在当前数字化转型的浪潮中,客户关系管理(CRM)系统已成 为企业提升客户服务效率、优化销售流程的核心工具。然而,传统 CRM 系统普遍面临数据处理能力有限、客户洞察深度不足、响应 效率低下等问题。例如,某零售企业 CRM 大模型,构建具 备三大核心能力的智能 CRM 系统:首先,实现客户意图的实时精 准识别,将对话内容分析准确率从现有系统的 65%提升至 92%以 上;其次,建立动态客户画像系统,通过模型自动提取交互记录中 的消费偏好、投诉倾向等 20+维度特征;最后,打造智能工作流引 擎,使销售线索响应时间从平均 4.3 小时缩短至 15 分钟以内。项 目成功实施后,预计可为企业带来客户满意度提升 40%、销售转化 能完成客户画像构建,操作效率低下直接导致平均响应时间延长至 6.8 分钟。 主要技术挑战集中在以下方面: - 数据孤岛问题:营销数据(MA)、销售数据(SFA)和服务数据 (SC)分别存储在 3-4 个独立数据库中,跨部门数据同步延迟达 4- 6 小时 - 交互体验局限:现有智能客服仅支持预设话术,当客户问题涉及 多业务线时,转人工率高达 73% - 决策支持薄弱:销售预测准确率普遍低于 60%,缺乏基于客户行10 积分 | 179 页 | 1.22 MB | 1 月前3
AI大模型人工智能行业大模型SaaS平台设计方案2022 年达到 了 387 亿美元,预计到 2030 年将增至 1,391 亿美元,复合年增长 率达到 17.5%。基于此,开发一个高效、稳定的大模型 SaaS 平 台,无疑是一个充满潜力的投资机会。 在设计方案中,需要重点考虑以下几个方面: 1. 模型选择与优化:需选择适合行业需求的大模型,并在此基础 上进行高效的模型优化,以确保在不同场景下的表现。 2. 数据处理能力:平台需要具备强大的数据处理和实时分析能 用户能够轻松上手并获得满意的使用体验。 4. 安全与合规:必须建立完善的数据安全机制,确保用户数据的 隐私保护,并遵守相关法律法规。 5. 运营和支持:提供优质的客户支持和技术保障,确保用户在使 用过程中能迅速获得帮助,最大化服务价值。 通过这些考虑,我们可以构建一个切实可行的人工智能大模型 SaaS 平台,满足市场需求,并帮助企业实现数字化转型。接下来 的章节将详细展开各个模块的设计思路及实施方案,为建设这样一 模型训 练。这种平台能够为不具备强大技术和资金实力的中小企业提供便 捷的 AI 解决方案,使其能够在竞争激烈的市场环境中立足。 从市场需求来看,以下几个因素进一步推动了大模型 SaaS 平 台的发展: 1. 企业数字化转型的迫切性:许多企业急需通过人工智能提升业 务效率,改善客户服务。 2. 开发成本的降低:利用 SaaS 平台,企业无需从头开发和维护 复杂的 AI 基础设施。 350 积分 | 177 页 | 391.26 KB | 8 月前3
DeepSeek在金融银行的应用方案融合,能够迅速处理和分析海量金融数据,帮助银行机构在风险控 制、客户管理、产品创新等关键领域实现智能化转型。通过引入 DeepSeek,银行不仅能够提升业务处理效率,还能在复杂的市场 环境中做出更为精准的决策,从而显著降低运营成本,增强风险抵 御能力。 风险控制:DeepSeek 通过实时监控和分析交易数据,能够精 准识别异常行为和潜在风险点,为银行提供及时的风险预警和 应对策略。 此外,DeepSeek 还具备高度的可扩展性和灵活性,能够根据 银行的具体需求进行定制化部署,确保与现有系统的无缝集成。通 过引入 DeepSeek,金融银行不仅能够提升自身的核心竞争力,还 能在数字化转型的浪潮中占据先机,实现可持续发展。 1.1 DeepSeek 技术概述 DeepSeek 是一种基于深度学习和自然语言处理(NLP)技术 的先进人工智能平台,旨在通过高效的算法和海量数据训练,提升 金 资策略优化等。例如,通过深度学习和 NLP 技术,DeepSeek 可以 从海量交易数据中识别潜在的风险因素,预测客户的信用违约概 率,从而帮助银行制定更加科学的风控策略。同时,在客户服务方 面,DeepSeek 的智能客服系统能够理解自然语言,提供 7*24 小 时的高效响应,显著提升客户满意度。 为了进一步提升 DeepSeek 技术在金融银行中的应用效果,以 下是一些关键的技术特点: 高精度预测:通过深度神经网络模型,DeepSeek10 积分 | 154 页 | 527.57 KB | 9 月前3
共 43 条
- 1
- 2
- 3
- 4
- 5
