积分充值
 首页  上传文档  发布文章  登录账户
维度跃迁
  • 综合
  • 文档
  • 文章

无数据

分类

全部人工智能(38)大模型技术(38)

语言

全部中文(简体)(38)

格式

全部PDF文档 PDF(13)DOC文档 DOC(13)PPT文档 PPT(12)
 
本次搜索耗时 0.038 秒,为您找到相关结果约 38 个.
  • 全部
  • 人工智能
  • 大模型技术
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • DOC文档 DOC
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 2025年大模型一体机服务商研究报告-亿欧智库

    20 积分 | 16 页 | 3.57 MB | 4 月前
    3
  • pdf文档 2025年以计算加速迈进智能化未来-IDC新一代云基础设施实践报告

    以计算加速迈进智能化未来 ⸺IDC新一代云基础设施实践报告 趋势:云服务能力持续跃升,加速企业数智化转型与创新 01 目录 1.1 技术全面升级,为复杂的企业在线业务提供保障 1.2 软硬一体协同优化,应对AI时代激增的数据冲击 1.3 持续的融合创新,助力企业的国际化布局 挑战:企业多元业务需求与海量AI数据的冲击 02 2.1 在线业务面临性能与效率的极限挑战 �.� AI数据处理与计算协同的复杂度激增 AI数据处理与计算协同的复杂度激增 2.3 国际化进程中的全球布局、合规与质量一致性难题 2.4 安全、稳定与成本的多元保障要求 解决方案 03 3.1 打造极致性能体验,为传统计算业务打开新空间 3.2 技术和架构创新,提升AI时代的向量数据处理和协同计算效率 3.3 强化硬件安全设计,持续增强安全保障能力 3.4 全球一致的云服务能力体系,全面助力企业国际化战略 优秀实践分析 04 4 对算力密度的极致追求:企业希望利用有限的物理空间输出更强大的算力。这一方面体现在 一些高端的云服务实例可以提供数百、数千甚至数万数量级的CPU、GPU核服务能力;另一 方面,为满足大数据、数据库、3D视频处理在内的一些单核敏感型业务的需要,云服务仍将 持续提升单核、单实例性能。 多技术融合提升连接性能:云服务商综合利用内存/缓存、PCle、RDMA、IP网、EIP、VPC 等一系列技术升级和软硬件融合优化成果,大幅提升云、边、端不同位置服务之间的协同效
    10 积分 | 27 页 | 5.31 MB | 3 月前
    3
  • pdf文档 Nacos3.0开源开发者沙龙·Agent & MCP杭州站 一个易于构建 AI Agent 应用的服务、配置和AI智能体管理平台(87页)

    Nacos3.0架构 安全零信任&AI Registry Nacos PMC 2025/07/10 一个易于构建 AI Agent 应用的服务、配置和AI智能体管理平台 柳 遵 飞 ( 翼 严 ) CONTENT 目录 Nacos3.0 架构升级&核心能力 性能 & 可拓展性提升 01 Nacos3.0 安全零信任 Nacos内核&应用安全零信任实践 02 Nacos MCP Registry & MCP Router 03 Nacos 3.0 未来规划演进 一个易于构建 AI Agent 应用的服务、配置和AI智能体管理平台 04 Part 1 Nacos3.0 架构升级&核心能力 性能 & 可拓展性提升 Nacos 简介 Nacos2.0时代:一个更易于构建云原生应用的动态服务发现、配置管理和服务管理平台 https://nacos.io/ 功能易用性 安全风险 AI时代 • 构建AI应用部署形态改变 • 原生配置&服务的模型如何支持 AI应用构建,相比微服务时代提 供更易用的产品化功能 • 默认命名空间不统一:服务&配 置标识不一致 • 配置及服务的动态订阅 • 分布式锁功能支持 • 内核和控制台同端口 • 鉴权开关绑定 • 应用侧数据源动态无损轮转 Nacos-Controller :
    20 积分 | 87 页 | 11.66 MB | 3 天前
    3
  • pdf文档 信息服务-AI Agent(智能体):从技术概念到场景落地

    发方向,像目前关注度较高的自动驾驶技术、智能电网控制、能源管理等都能被 垂类智能体覆盖。结合多模态大模型,自动化和情感需求类智能体已落地。但商 业化智能体仍需考虑成本问题,由于智能体之间的交互过程可能出现错误循环且 输出结果不一定符合需求,tokens 成本远高于普通 LLMs。  人工智能发展迅猛,智能体商业化落地:未来多方面推动人工智能发展,应用级 别智能体有望快速落地。国内各地相继出台关于人工智能的发展政策,推动其为 制造、能源、医疗、零售等多个领域实现智能化应用。结合国家政策支持以及各 大企业的积极投入,智能体技术将不断进步,特别是在算力快速增长的背景下, AI Agent 的发展前景更加可期。多模态智能体的出现,将进一步推动各行业智能 化应用的升级,智能体的商业化将迎来新的突破。  建议关注:AI 算力、模型和应用:寒武纪-U、海光信息、景嘉微、龙芯中科、浪 潮信息、中科曙光、神州数码、软通动力、中国长城、科大讯飞、中控技术、海 也分为单智能体和多智能体。单智 能体通过试错学习在单一环境中行动,追求最大奖励,多用于简易任务。多智能体在博 弈环境中行动,追求长期累积奖励,多用于复杂测试。 1.1Agent 模式架构解析 Agent 有效减少人类工作总量,人与 AI 协作才是最终形态。人类与 AI 交互可大致 分为三种模式。Embedding 模式中大模型可以填补一些信息缺失,完成少量子任务,例 如总结信息等等。用户最终会整合挑选
    10 积分 | 33 页 | 4.71 MB | 3 天前
    3
  • ppt文档 人工智能技术及应用(56页PPT-智能咨询、智能客服)

    新时达以发行股份及支付现金相结合的方式 6. 是否构成上市公司重大资产重组: 构成上市公司重大资产重组 7. 本次交易对上市公司影响 本次交易将进一步优化公司业务结构、完善公司在运动控制及机器人业务领域的产业链、扩大 公司 业务规模、壮大公司主营业务, 有利于进一步提升上市公司的综合竞争能力、市场拓展能 力、资源 整合能力,进而提升公司的盈利水平,增强抗风险能力和可持续发展能力, 订阅推送:对搜索癿分析结果进行订阅推送,通 过邮件癿形式把分析结果发送给用户。 资讯简报 用智慧发现信息价值 Discover information . 用户可以自己定义观察视角,自 定义关注对象、关注领域。 . 同一事物,丌同癿人有丌同癿观 察视角,每个用户可以独立配置 自己癿使用习惯。 . 定义癿关注领域,可以是多层级 癿,用户可以定义具有父子关系 癿多层级领域树。 自定义观察领域树 自定义观察对象 宇顺、铨银高科、 ST 华泽 宝能系 广东 姚振华 万科 A 、中炬高科、韶能股份、南玻 A 鹏欣系 上海 姜照柏 国中水务、鹏欣资源、大康农业 万向系 浙江 鲁冠球 万向钱潮、顺发恒业、承德露露、万向 德农 茂业系 广东 黄茂如 茂业通信、茂业商业、 ST 商城 4 、关联关系图谱:通过互联网采集平台,整合行内外客户关联与交易信息,通过 OEC 平台进行深度挖掘与加工,识别 4 类 客 户关联
    10 积分 | 55 页 | 5.54 MB | 3 天前
    3
  • word文档 审计领域接入DeepSeek AI大模型构建Agent智能体提效设计方案(204页 WORD)

    异常交易识别时效 72 小时 ≤24 小时 200% 全量数据分析覆盖率 12% ≥90% 650% 审计调整事项回溯准确 率 68% ≥95% 40% 为突破这些限制,领先机构已开始探索智能审计路径。德勤 2024 年技术展望显示,采用机器学习模型的审计项目将关键风险 识别速度提升 3 倍,但模型可解释性不足导致 35%的审计结论难以 通过监管复核。这揭示出当前 AI 应用需要解决的核心矛盾:如何 面对非结构化数据(如合同文本、邮件通信)时仍显乏力。某上市 公司审计案例显示,其采购循环审计中仍有 62%的供应商资质验证 需要人工复核扫描件,这类场景亟需具备多模态处理能力的智能体 支持。同时,审计质量控制的最后一公里问题突出,现有系统缺乏 对审计底稿逻辑完备性的自动校验能力,导致约 28%的监管问询源 于底稿链条断裂。 在此背景下,构建深度融合审计专业知识的智能体成为破局关 键。这类系统需要同时满足三个刚性要求:审计准则的强合规性约 周 | 实时 | 99% | 在实际落地层面,人工智能技术已展现出与审计场景深度结合 的潜力。以应收账款审计为例,智能体可实现: - 自动匹配销售订 单、出库单与收款记录的三单一致性校验 - 动态计算账龄分析并可 视化逾期风险分布 - 智能抽样替代随机抽样,使高风险样本覆盖率 提升 40% - 自动生成符合审计准则的询证函和工作底稿 通过流程图的业务逻辑建模可以清晰展现智能体的工作机理:
    10 积分 | 212 页 | 1.52 MB | 3 天前
    3
  • word文档 AI知识库数据处理及AI大模型训练设计方案(204页 WORD)

    ...........................202 1. 项目概述 随着人工智能技术的迅猛发展,知识库数据处理及 AI 大模型 训练已成为推动智能化应用落地的核心环节。本项目旨在构建一套 完整的数据处理与模型训练方案,以满足企业在复杂场景下的智能 化需求。项目通过对多源异构数据的采集、清洗、标注和结构化处 理,打造高质量的知识库,为后续的 AI 模型训练提供坚实的基 础。同 到预期目标。项目的实施将涵盖以下关键步骤:  数据采集与整合:从内部系统、公开数据集以及第三方数据源 中获取数据,确保数据的多样性和覆盖度。  数据清洗与预处理:通过去重、缺失值填充、异常值处理等操 作,提升数据的纯净度和一致性。  数据标注与结构化:基于业务需求,对非结构化数据进行标注 和结构化处理,形成可被模型直接利用的知识库。  模型训练与优化:采用分布式训练架构,结合超参数调优和模 型剪枝等技术,提升模型的训练效率和性能。 Kubernetes、Spark),以确保方案的灵活性和可扩展性。同时, 项目将注重数据安全与隐私保护,通过数据脱敏、加密传输和访问 控制等手段,确保数据处理过程中的合规性。 项目的最终目标是为企业提供一套高效、可靠的知识库数据处 理及 AI 大模型训练方案,助力其在智能化转型中占据竞争优势。 通过本项目的实施,企业将能够显著提升数据处理能力和模型训练 效率,为后续的智能化应用开发和部署打下坚实的基础。
    60 积分 | 220 页 | 760.93 KB | 4 月前
    3
  • pdf文档 大模型技术深度赋能保险行业白皮书151页(2024)

    2024年10月 PREFACE 前 言 � 在人类科技发展的历史洪流中,2023年无疑是大模型技术取得突破性进展的元年。 ChatGPT的问世,如同一颗石子投入平静的湖面,激起了全球科技领域的滔天巨浪。它不 仅深刻改变了人机交互的方式,更预示着一个由大模型引领的智能新时代的到来。比尔· 盖茨的赞誉、马斯克的断言以及马化腾的深刻洞察,都从不同角度揭示了大模型技术对于 人类社会发展的深远影响。 在保险行业,这一技术革命同样引发了深刻的变革。国内外众多保险公司和保险科技 公司,如阳光、人保、平安、国寿、泰康、瑞再、安盛、安联等,纷纷投身于大模型技术的研发 与应用,积极探索其在保险业务中的无限可能。阳光保险集团作为行业的先行者和探索 者,于2023年初率先启动了“阳光正言GPT大模型战略工程”,旨在通过大模型技术的深度 应用,推动保险业务模式的重塑与升级。 经过一年的实践与沉淀, 经过一年的实践与沉淀,可以看到,2024年是大模型技术在各行各业的应用落地之 年。这一年,我们见证了大模型技术从理论探索走向实际应用,从概念验证进入规模化部 署的关键阶段。因此,本年度《大模型技术深度赋能保险行业白皮书》的编写,不仅是对过 去一年技术发展的总结与回顾,更是对未来应用前景的展望与规划,旨在为保险行业的智 能化转型提供技术参考和实践建议。 白皮书基于阳光保险的大模型落地实践经验,深入剖析了大模型技术在保险行业的落
    20 积分 | 151 页 | 15.03 MB | 3 天前
    3
  • pdf文档 基于大模型的具身智能系统综述

    intelli- gence”[1] 中对未来机器发展方向的设想: 一个方向 是让机器学会抽象技能, 如下棋; 另一个方向则是 为机器人提供足够好的传感器, 使之可以像人类一 样学习. 前者的思想出现在后来发展的各类神经网 络如多层感知机、卷积神经网络中, 即离身智能; 后 者则逐渐发展出了具身智能的概念. 现在, 具身智 能一般指拥有物理实体, 且可以与物理环境进行信 息、能量交换的智能系统[2] 量级提供跨越图像与文本鸿沟的能力, 为进行实时 的开放词汇的视觉检索提供了可能. 这一系列的进 展不仅展示了基础模型的强大潜力, 也为其与具身 智能的融合提供了新的视角和可能性. 文献 [19] 将 上述在大规模数据集上进行训练并能适应广泛任务 的模型统称为基础模型, 意即可作为大量下游任务 训练基础的模型 (目前一般认为基础模型即大模型, 后文将不对二者作区分). 由于涉及到物理环境, 机 器人深度学习模型往往面临数据获取难度大、训练 器人深度学习模型往往面临数据获取难度大、训练 的模型泛化性差的困境, 传统机器人往往仅能处理 单一任务, 无法灵活面对复杂的真实环境. 而基础 模型用来自互联网的大量文本、图片数据进行预训 练, 往往包含各种主题与应用场景, 能学习到丰富 的表示与知识, 具有解决各类任务的潜能, 其作为 具身智能的“大脑”能显著弥补机器人领域训练数据 少且专门化的缺点, 为系统提供强大的感知、理解、 决策和行动的能力.
    20 积分 | 19 页 | 10.74 MB | 3 天前
    3
  • word文档 DeepSeek在金融银行的应用方案

    ....145 1. 引言 随着金融科技的迅猛发展,传统金融银行业面临着前所未有的 挑战与机遇。数字化转型已成为金融银行业提升效率、优化客户体 验、增强竞争力的必由之路。在这一背景下,DeepSeek 作为一款 先进的智能解决方案,凭借其强大的数据分析能力、智能决策支持 以及高效的业务流程自动化,为金融银行业提供了切实可行的应用 方案。 DeepSeek 的核心优势在于其深度学习和人工智能技术的深度 的无缝集成。通 过引入 DeepSeek,金融银行不仅能够提升自身的核心竞争力,还 能在数字化转型的浪潮中占据先机,实现可持续发展。 1.1 DeepSeek 技术概述 DeepSeek 是一种基于深度学习和自然语言处理(NLP)技术 的先进人工智能平台,旨在通过高效的算法和海量数据训练,提升 金融银行业务的智能化水平。该技术通过多层次的神经网络模型, 能够自动提取、分析和处理复杂的金融数据,从而为银行和金融机 率,从而帮助银行制定更加科学的风控策略。同时,在客户服务方 面,DeepSeek 的智能客服系统能够理解自然语言,提供 7*24 小 时的高效响应,显著提升客户满意度。 为了进一步提升 DeepSeek 技术在金融银行中的应用效果,以 下是一些关键的技术特点:  高精度预测:通过深度神经网络模型,DeepSeek 能够对金融 市场趋势进行高精度预测,为投资决策提供可靠依据。  实时数据分析:DeepSeek
    10 积分 | 154 页 | 527.57 KB | 6 月前
    3
共 38 条
  • 1
  • 2
  • 3
  • 4
前往
页
相关搜索词
2025模型一体一体机服务服务商研究报告亿欧智库计算加速迈进智能智能化未来IDC一代新一代基础设施基础设施实践Nacos3开源开发开发者沙龙AgentMCP杭州一个易于构建AI应用配置管理平台87信息技术概念场景落地人工人工智能56PPT咨询客服审计领域接入DeepSeek体提效设计方案设计方案204WORD知识知识库数据处理数据处理训练深度赋能保险行业保险行业白皮皮书白皮书1512024基于具身系统综述金融银行
维度跃迁
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传,所有资料均作为学习交流,版权归原作者所有,并不作为商业用途。
相关费用为资料整理服务费用,由文档内容之真实性引发的全部责任,由用户自行承担,如有侵权情及时联系站长删除。
维度跃迁 ©2025 | 站点地图 蒙ICP备2025025196号
Powered By MOREDOC PRO v3.3.0-beta.46
  • 我们的公众号同样精彩
    我们的公众号同样精彩